
RSS T.N. # 2003-01
February 22, 2005

2nd. DRAFT

Spin Asymmetries A1 and A2 and

Measured Asymmetries A‖ and A⊥

Oscar A. Rondon, INPP - UVA

1 Introduction

We need to convert the measured asymmetries A‖ and A⊥ into the physics
quantities of interest, the spin asymmetries A1 and A2. The conventional
expressions linking the two pairs of quantities (eq. (10)) apply only when the
scattering is in the same plane that contains the direction of the nucleon spin,
which is determined by the polarized target magnetic field. This approach is
valid when the final energy E ′ of the leptons is large, so that the deflections
caused by the target field are small, and the components in the plane are
very similar to the total magnitudes.
However, in RSS the final electron energies are as low as 3.4 GeV, which,

when the field is in the transverse or normal to the beam orientation, result
in deflections of up to 3.6◦ along the particles’ trajectories. These deflections
translate into tilts of the scattering plane relative to the horizontal laboratory
plane of up to 16◦, that need to be included in the extraction of A1 and A2.
A summary of the derivation and the resulting equations plus numerical

examples are given below.

2 Definitions

The starting point is the expression for the difference of cross sections for in-
clusive inelastic polarized leptons scattering on polarized nuclei, for opposite
relative alignments of the target spin relative to the beam helicity [1, 2, 3]

∆σ = σ↑↑ − σ↑↓ =
−4α2

Q2

E ′

E

[

(E cos θN + E ′ cosα)MG1 + 2EE
′(cosα− cos θN)G2

]

(1)
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where σ↑↑(↑↓) = d2σ↑↑(↑↓)/(dΩdE ′) is the inclusive double differential cross
section in the laboratory frame1; Ω is the solid angle element in this frame; α
is the fine structure constant (defined explicitly here to avoid confusion with
the angle α); Q2 is the squared four-momentum transfer; E and E ′ are the
beam and scattered lepton energies; M is the nucleon mass; and G1(Q

2,W )
and G2(Q

2,W ) are the nucleon spin structure functions of Q2 and of the final
state’s invariant massW . In the scaling limit Q2, ν →∞, G1 and G2 reduce
to M2νG1 = g1(x), Mν2G2 = g2(x), where ν = E −E ′ is the virtual photon
energy loss and x = Q2/(2Mν) is the Bjorken scaling variable.
The angle θN is the polar angle of the aligned nuclear spin direction S in

a right handed coordinate system with the z axis along the beam direction,
and the y axis pointing along the vector product of the beam and scattered
electron momenta k×k’. The plane containing k and k’ defines the scattering
plane (x, z). The azimuthal angle φ of the nuclear spin vector in this system
can also be viewed as the tilt of the scattering plane in a system in which
the (x, z) plane is defined by k and the nuclear spin (i.e. the horizontal
plane in the lab). The angle α is defined in terms of the scattering angle
θ = arccos(k·k’/(kk′)), θN and φ

cosα = sin θN sin θ cosφ+ cos θN cos θ. (2)

Ref. [3] gives a detailed derivation of the angle α.
The unpolarized cross section can be written in a convenient form as

σ =
d2σ

dΩdE ′
= ΓT (σT + εσL)

= σMott

(

W2 + 2 tan
2(
θ

2
)W1

)

=
2α2

Q2

E ′

E

(

W1 +
W2

2 tan2(θ/2)

)

, (3)

where σL and σT are the longitudinal and transverse virtual photon absorp-
tion cross sections; ε is the degree of longitudinal polarization of the virtual
photon, and ΓT is the flux of virtual photons

ε =
1

1 + 2(1 + ν2/Q2) tan2(θ/2)
,

ΓT =
α

2π2Q2

W 2 −M2

2M

E ′

E

1

1− ε
;

1Note that authors use different notations when referring to this cross section, in terms
of other kinematic variables.
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and σMott = [α cos(θ/2)/(2E sin2(θ/2))]2. W1(Q
2,W ) and W2(Q

2,W ) are
the unpolarized lepton-nucleon structure functions. In the scaling limit W1

and W2 reduce to F1(x) = MW1 and F2(x) = νW2. W1 and W2 are related
by

W2

W1

=
1 +R(Q2,W )

1 + ν2/Q2
, (4)

where R(Q2,W ) = σL/σT is another unpolarized structure function.

3 Asymmetries

With the above definitions the cross section differences for the
(anti)longitudinal2 (-S‖k) and transverse (S⊥k) configurations of the field
relative to the beam direction can be written as

∆σ‖ =
4α2

Q2

E ′

E
((E + E ′ cos θ)MG1 −Q2G2)

∆σ⊥ =
4α2

Q2

E ′

E
E ′ sin θ cosφ(MG1 + 2EG2) (5)

which are obtained by substituting in eq. (1), θN = 180
◦ for the longitudinal

case and θN = −90◦ for the transverse one.
The measured A‖ and A⊥ can be constructed from the respective cross

section differences divided by the sum, which is just twice the unpolarized
cross sections. We make use of the convenient cancellations of factors among
these equations and the last form of eq. (3), to get

A‖ =
∆σ‖
2σ

=
D′

W1

((E + E ′ cos θ)MG1 −Q2G2)

A⊥ =
∆σ⊥
2σ

=
D′

W1

E ′ sin θ cosφ(MG1 + 2EG2)

D′ =
1− ε

1 + εR
. (6)

2During RSS the target chamber was rotated clockwise from its orientation during TJ-
NAF E93-026 (Gn

E) to align the magnet axis with the beam. The magnet axis pointed
to the left of the beam during E93-026 to deflect the beam downwards towards the beam
dump and, since the magnet power supply leads were not reversed, the field pointed up-
stream of the beam during RSS. The corresponding direction of the field for the transverse
configuration was -90◦ (+x axis points to the right of the beam).
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This system of equations needs to be solved for G1 and G2. The solutions
are

MG1

W1

=
Q2(cot(θ/2) cosφ A‖ + A⊥)

D′E ′ sin θ cosφ (Q2 + 2E(E + E ′ cos θ))

G2

W1

=
−E ′ sin θ cosφ A‖ + (E + E ′ cos θ)A⊥

D′E ′ sin θ cosφ (Q2 + 2E(E + E ′ cos θ))
. (7)

The reason for leaving the structure functions in the l.h.s. is apparent
when looking at the expressions for the spin asymmetries

A1 = ν
MG1

W1

−Q2 G2

W1

A2 =
√

Q2
(MG1

W1

+ ν
G2

W1

)

. (8)

These expressions are derived directly from the definitions of A1 and A2 in
terms of total photoabsorption cross sections. Substituting eq. (7) in the
above expressions yields the final result

A1 =
Q2

D′

(ν cot(θ/2) + E ′ sin θ) cosφ A‖ − E ′(1 + cos θ)A⊥

E ′ sin θ cosφ (Q2 + 2E(E + E ′ cos θ))

A2 =

√
Q2

D′

(Q2 cot(θ/2)− νE ′ sin θ) cosφ A‖ + (Q
2 + ν(E + E ′ cos θ))A⊥

E ′ sin θ cosφ (Q2 + 2E(E + E ′ cos θ))
(9)

4 Numerical examples and other considera-

tions

The expressions for A1 and A2 given in eq. (9), setting φ = 0, can be com-
pared numerically to the results obtained from the usual formulas [4]

A1 =
C

D

(

A|| − dA⊥

)

A2 =
C

D

(

c′A|| + d′A⊥

)

(10)

where C = 1/(1 + ηc′); η = ε
√
Q2/(E − εE ′); c′ = η(1 + ε)/(2ε); D =

(1 − εE ′/E)/(1 + εR) is the virtual photon depolarization factor; d′ =

1/
√

2ε/(1 + ε); and d = ηd′.
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Both sets of equations agree, within the precision of rounding errors, at
the level of ratios of coefficients of A⊥ over A‖, and in the overall values of
A1 and A2.
Equations (10) are usually derived for the case of θN = 0

◦ and 90◦. For
the case of θN = 180

◦ and −90◦ there are overall (-) signs for each. However,
since the A‖ and A⊥ asymmetries measured in RSS are defined as having
the opposite signs as the ones for 0◦ and 90◦, there is a sign cancellation, and
the results with both sets of expressions agree, as expected.
The table below gives the sign of the coefficients of A‖ and A⊥ in eq. (7)

for several combinations of θN

Function Asymmetry θN parallel, perpendicular
0◦, 90◦ 180◦, 90◦ 180◦, -90◦

MG1

W1
A‖ − + +

A⊥ − − +
G2

W1
A‖ + − −
A⊥ − − +

In applying the expressions above, it must be kept in mind that the
deflection of the scattered electrons by the target field is a function of the
electron momentum k’, and therefore φ(W ) is not a constant value. The
effective φ for each bin in W can be either calculated in the analysis engine
or by hand. In the calculation by hand, some type of code for particle tracking
in the target magnetic field (such as magnet8a.f [5]) is needed to calculate
the deflection angle δ along the particle’s trajectory relative to the horizontal
plane. This angle in turn is converted to φ using

tanφ =
tan δ

sin θ
, (11)

since, as indicated above, φ can be equally measured relative to the horizontal
plane instead of the scattering plane.
The deflections for the A⊥ configuration at 90

◦ range from 2.67◦ for elastic
scattering to 3.72◦ for W = 1.985 GeV. The corresponding φ’s range from
11.61◦ to 16.01◦. Since φ enters only as the argument of the cosine, the effect
of even these large tilts is relatively small, a 2.5% or less correction to the
asymmetries.
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The small dependence of δ on the actual scattering angle θ for each event
is entirely negligible, since it has a variation at fixedW of less than 7% across
the entire HMS θ acceptance.

5 Coefficients of A‖, A⊥ for ntuple

The expressions in eq. (9) can be rewritten in terms of basic kinematic quan-
tities E, E ′ and θ so that the coefficients of A‖ and A⊥ can be computed in
the analyzer code and stored in the ntuple. Starting with 3

A1 =
1

(E + E ′)D′

(

(E − E ′ cos θ)A‖ −
E ′ sin θ

cosφ
A⊥

)

A2 =

√
Q2

2ED′

(

A‖ +
E − E ′ cos θ

E ′ sin θ cosφ
A⊥

)

(12)

the coefficients that can be calculated for every W bin are:

na1 =
1

E + E ′

ca1par = E − E ′ cos θ

ca1per =
E ′ sin θ

cosφ

na2 =

√
Q2

2E

ca2per =
E − E ′ cos θ

E ′ sin θ cosφ

in addition to ε, which is needed to compute D′. D′ cannot be stored in
the ntuple, because it is a function of the R structure function, which is
calculated separately.
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