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1 Introduction

We need to convert the measured asymmetries A and A, into the physics
quantities of interest, the spin asymmetries A; and A,;. The conventional
expressions linking the two pairs of quantities (eq. (10)) apply only when the
scattering is in the same plane that contains the direction of the nucleon spin,
which is determined by the polarized target magnetic field. This approach is
valid when the final energy E’ of the leptons is large, so that the deflections
caused by the target field are small, and the components in the plane are
very similar to the total magnitudes.

However, in RSS the final electron energies are as low as 3.4 GeV, which,
when the field is in the transverse or normal to the beam orientation, result
in deflections of up to 3.6° along the particles’ trajectories. These deflections
translate into tilts of the scattering plane relative to the horizontal laboratory
plane of up to 16°, that need to be included in the extraction of A; and As.

A summary of the derivation and the resulting equations plus numerical
examples are given below.

2 Definitions

The starting point is the expression for the difference of cross sections for in-
clusive inelastic polarized leptons scattering on polarized nuclei, for opposite
relative alignments of the target spin relative to the beam helicity [1, 2, 3]
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where o100 = @25110D /(dQdE') is the inclusive double differential cross
section in the laboratory frame?; €2 is the solid angle element in this frame; o
is the fine structure constant (defined explicitly here to avoid confusion with
the angle a); Q2 is the squared four-momentum transfer; E and E’ are the
beam and scattered lepton energies; M is the nucleon mass; and G1(Q? W)
and Go(Q?, W) are the nucleon spin structure functions of Q% and of the final
state’s invariant mass W. In the scaling limit Q?, v — oo, G, and G5 reduce
to M?vGy = gi(z), Mv*Gy = go(z), where v = E — E' is the virtual photon
energy loss and z = Q?/(2Mv) is the Bjorken scaling variable.

The angle 0 is the polar angle of the aligned nuclear spin direction S in
a right handed coordinate system with the z axis along the beam direction,
and the y axis pointing along the vector product of the beam and scattered
electron momenta kxk’. The plane containing k and k’ defines the scattering
plane (z,z). The azimuthal angle ¢ of the nuclear spin vector in this system
can also be viewed as the tilt of the scattering plane in a system in which
the (x,z) plane is defined by k and the nuclear spin (i.e. the horizontal
plane in the lab). The angle « is defined in terms of the scattering angle

= arccos(k-k’/(kk')), On and ¢
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Ref. [3] gives a detailed derivation of the angle a.
The unpolarized cross section can be written in a convenient form as
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where o7, and o7 are the longitudinal and transverse virtual photon absorp-
tion cross sections; ¢ is the degree of longitudinal polarization of the virtual
photon, and I'r is the flux of virtual photons
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!Note that authors use different notations when referring to this cross section, in terms
of other kinematic variables.



and oy = [acos(0/2)/(2Esin?(0/2))]2. Wi (Q?, W) and Wy(Q?* W) are
the unpolarized lepton-nucleon structure functions. In the scaling limit W;
and W5 reduce to Fi(x) = MW, and Fy(x) = vW,. Wy and W, are related
by
Wy 14 R(Q*W)
Wy 1+02/Q2

where R(Q?* W) = o, /or is another unpolarized structure function.

(4)

3 Asymmetries

With the above definitions the cross section differences for the
(anti)longitudinal® (-S|/k) and transverse (S_Lk) configurations of the field
relative to the beam direction can be written as
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which are obtained by substituting in eq. (1), 0y = 180° for the longitudinal
case and Oy = —90° for the transverse one.

The measured A and A, can be constructed from the respective cross
section differences divided by the sum, which is just twice the unpolarized
cross sections. We make use of the convenient cancellations of factors among
these equations and the last form of eq. (3), to get
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2During RSS the target chamber was rotated clockwise from its orientation during TJ-
NAF E93-026 (G%) to align the magnet axis with the beam. The magnet axis pointed
to the left of the beam during E93-026 to deflect the beam downwards towards the beam
dump and, since the magnet power supply leads were not reversed, the field pointed up-
stream of the beam during RSS. The corresponding direction of the field for the transverse
configuration was -90° (+z axis points to the right of the beam).
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This system of equations needs to be solved for Gy and G5. The solutions
are

MG, Q*(cot(0/2)cosp A+ A))
W, D'E'sinfcos¢ (Q? + 2E(E + E' cosf))
Gy —FE'sinfcos¢ A+ (E + E'cosf) A,

W, D'E'sinfcos¢ (Q* 4+ 2E(E + E'cosf))’ (M)

The reason for leaving the structure functions in the l.h.s. is apparent
when looking at the expressions for the spin asymmetries
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These expressions are derived directly from the definitions of A; and Ay in
terms of total photoabsorption cross sections. Substituting eq. (7) in the
above expressions yields the final result
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4 Numerical examples and other considera-
tions

The expressions for A; and A, given in eq. (9), setting ¢ = 0, can be com-
pared numerically to the results obtained from the usual formulas [4]
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where C' = 1/(1 +nd); n = eyQ?/(E —eE'); ¢ = n(l +¢)/(2); D =
(1 —eE'/E)/(1 + eR) is the virtual photon depolarization factor; d' =

1/4/2¢/(1+¢); and d = nd'.



Both sets of equations agree, within the precision of rounding errors, at
the level of ratios of coefficients of A over A, and in the overall values of
Ay and As.

Equations (10) are usually derived for the case of 65 = 0° and 90°. For
the case of Oy = 180° and —90° there are overall (-) signs for each. However,
since the A and A, asymmetries measured in RSS are defined as having
the opposite signs as the ones for 0° and 90°, there is a sign cancellation, and
the results with both sets of expressions agree, as expected.

The table below gives the sign of the coefficients of Ay and A, in eq. (7)
for several combinations of 8y

Function | Asymmetry Oy parallel, perpendicular
0°, 90° | 180°, 90° | 180°, -90°
MG,
A _
i I + +
Al — — +
Go
A 4 + - -
Al — — +

In applying the expressions above, it must be kept in mind that the
deflection of the scattered electrons by the target field is a function of the
electron momentum k’, and therefore ¢(WW) is not a constant value. The
effective ¢ for each bin in W can be either calculated in the analysis engine
or by hand. In the calculation by hand, some type of code for particle tracking
in the target magnetic field (such as magnet8a.f [5]) is needed to calculate
the deflection angle ¢ along the particle’s trajectory relative to the horizontal
plane. This angle in turn is converted to ¢ using

PSR (11)

since, as indicated above, ¢ can be equally measured relative to the horizontal
plane instead of the scattering plane.

The deflections for the A configuration at 90° range from 2.67° for elastic
scattering to 3.72° for W = 1.985 GeV. The corresponding ¢’s range from
11.61° to 16.01°. Since ¢ enters only as the argument of the cosine, the effect
of even these large tilts is relatively small, a 2.5% or less correction to the
asymmetries.



The small dependence of § on the actual scattering angle 6 for each event
is entirely negligible, since it has a variation at fixed W of less than 7% across
the entire HMS 6 acceptance.

5 Coefficients of A, A, for ntuple

The expressions in eq. (9) can be rewritten in terms of basic kinematic quan-
tities &/, £ and 6 so that the coeflicients of A and A, can be computed in
the analyzer code and stored in the ntuple. Starting with 3
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the coefficients that can be calculated for every W bin are:
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in addition to e, which is needed to compute D’. D’ cannot be stored in
the ntuple, because it is a function of the R structure function, which is
calculated separately.
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