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Abstract

Jefferson Lab Experiment E04-001 used the Rosenbluth technique to mea-

sure R = σL/σT and F2 on nuclear targets. This experiment was part of

a multilab effort to investigate quark-hadron duality and the electromagnetic

and weak structure of the nuclei in the nucleon resonance region. In addition

to the studies of quark-hadron duality in electron scattering on nuclear targets,

these data will be used as input form factors in future analysis of neutrino data

which investigate quark-hadron duality of the nucleon and nuclear axial struc-

ture functions. An important goal of this experiment is to provide precise data

which to allow a reduction in uncertainties in neutrino oscillation parameters

for neutrino oscillation experiments (K2K, MINOS). This inclusive experiment

was completed in July 2007 at Jefferson Lab where the Hall C High Momentum

Spectrometer detected the scattered electron. Measurements were done in the

nuclear resonance region (1 < W 2 < 4 GeV 2) spanning the four-momentum

transfer range 0.5 < Q2 < 4.5 (GeV 2). Data was collected from four nuclear

targets: C, Al, Fe and Cu.



ii

Acknowledgments

I am heartily thankful to my supervisor, Prof. Donal Day, whose encouragement,

guidance and support enabled me to develop an understanding of the subject.

I thank the members of University of Virginia research group Dr. Oscar Rondon,

Prof. Donald Crabb, Prof. Kent Paschke, and Prof. Mark Williams for carefully

reviewing my thesis.

I am grateful to Dr. Peter Bosted and Prof. Eric Christy for their continuous in-

volvement and help in the analysis of this experiment. I am also thankful to graduate

students Ibrahim Albayrak and Ya Li for their contribution to this analysis and Dr.

Patricia Solvignon for organizing analysis meetings.

It is a pleasure to thank those who made this thesis possible such as the authors

of the E04-001 proposal, Prof. Arie Bodek and Prof. Cynthia Keppel.



iii

Contents

Introduction 1

1. Nucleon Structure 7

1.1 Inclusive Lepton-Nucleon Reactions . . . . . . . . . . . . 7

1.1.1 Deep Inelastic Scattering and Quark Parton Model 13

1.1.2 Scaling Violation in DIS . . . . . . . . . . . . . . 18

1.2 F2 and R in the Nuclear Resonance Region . . . . . . . . 21

1.3 Quark Hadron Duality . . . . . . . . . . . . . . . . . . . 24

1.3.1 Bloom-Gilman Duality . . . . . . . . . . . . . . . 24

1.3.2 Duality in Nuclei . . . . . . . . . . . . . . . . . . 27

1.4 Theoretical Basis of Duality . . . . . . . . . . . . . . . . 29

1.4.1 Moments of Structure Functions . . . . . . . . . . 29

1.4.2 Operator Product Expansion . . . . . . . . . . . 30

1.5 The Nuclear Dependence of R . . . . . . . . . . . . . . . 33

1.6 Neutrino Scattering . . . . . . . . . . . . . . . . . . . . . 36

1.6.1 Structure Functions in DIS . . . . . . . . . . . . . 37

1.6.2 Neutrino Scattering in Resonance Region . . . . . 39

2. Experimental Apparatus 43



iv

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 The Thomas Jefferson Accelerator Facility . . . . . . . . 44

2.3 Beam-line Apparatus . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Beam Position Monitors . . . . . . . . . . . . . . 46

2.3.2 Beam Current Monitors . . . . . . . . . . . . . . 48

2.3.3 Beam Raster . . . . . . . . . . . . . . . . . . . . 49

2.4 Experimental Hall C . . . . . . . . . . . . . . . . . . . . 50

2.5 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 High Momentum Spectrometer . . . . . . . . . . . . . . 54

2.6.1 HMS Optics Design . . . . . . . . . . . . . . . . . 54

2.7 HMS Detector Package . . . . . . . . . . . . . . . . . . . 55

2.7.1 Drift Chambers . . . . . . . . . . . . . . . . . . . 56

2.7.2 Hodoscopes . . . . . . . . . . . . . . . . . . . . . 58
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Introduction

The study of the strongly interacting particles of nature is the study of hadrons. The

hadrons make up the atomic nucleus and the proton and neutron account for almost

all the mass in the known universe. In contrast to their abundance our knowledge of

the force which determines their interactions - the force responsible for both holding

the nucleus together, limiting its maximum size as well as determining its dynamics,

is the least well understood of the four fundamental forces of nature. This should

not be surprising given the description of the strong interaction in terms of Quantum

ChromoDynamics (QCD) wherein the nucleons are the lowest mass excitations of the

complicated blend of quark and gluon condensates which form the QCD vacuum. The

key features associated with the QCD Lagrangian are exhibited by the nucleon are:

color confinement, asymptotic freedom and spontaneously broken chiral symmetry.

A study of the nucleon is a study of the strong interaction and QCD. QCD is a

renormalizable field theory based upon the principle of local gauge invariance under

the exchange of color. QCD describes the strong force in terms of fermion fields of

a given color charge, given the name quarks by Gell-Mann, interacting through the

exchange of massless gauge bosons known as gluons. The distinctive feature of QCD

which sets it apart from the electroweak theory is the fact that these gluons possess

non-zero color charge (unlike the photons in electro-magnetism which carry no electric

charge).

Among the main consequences is the property of color confinement – quarks and

gluons are not permitted to exist as isolated free particles, but must combine to form

color-neutral singlets: the three-quark baryons, of which the nucleons are the most

stable, and the quark/anti-quark mesons. To date, the quantum numbers of all known
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strongly interacting particles have been accounted for using a model based upon the

non-Abelian internal SU(3)c symmetry of QCD for elementary quarks of six different

flavors (these are labeled in order of increasing mass as up, down, strange, charm,

bottom and top). Though the static properties of the nucleon can be described in this

manner, the extreme non-linear nature of the strong force means that the dynamical

properties of its constituents vary significantly depending on the momentum scale at

which it is studied. Practitioners are forced to confront a profound chasm: large mo-

mentum behavior of the nucleon can accurately be described by the quark and gluon

fields of which it is composed, but this same description fails at low momentum where

successful models have to rely instead on effective hadronic degrees of freedom. This

is related to the asymptotic freedom of QCD, responsible for the fact that the force

between the quarks within the nucleon becomes weaker as they move closer together.

For high momentum (hard) scattering processes involving the nucleon, perturbative

QCD (pQCD) can be used to express the physical amplitudes as a perturbative series

in the strong coupling constant αs, analogous to Quantum Electrodynamics (QED).

Renormalization of the field theory is required for such a series to converge and is

achieved by the introduction of an arbitrary mass scale. This, in turn, leads to the

running of the coupling strength of the strong interaction. Said another way, the

effective strength is not constant as in the electromagnetic case but depends on the

momentum scale, decreasing logarithmically at large momentum transfers. Hence an

increase in momentum not only implies a shorter distance scale but a decrease in the

effective coupling, allowing the perturbative expansion to converge and enabling rig-

orous predictions based upon the quark and gluon fields alone. Asymptotic freedom

also means that the relatively large running coupling strength associated with the



3

low momentum (soft) regime makes a perturbative expansion in αs of little value at

large distance scales, such as typical hadronic sizes or larger. Rigorous solutions are

not available for non-perturbative QCD and nucleon behavior at comparatively low

energies leaving effective theories the only viable alternative. These are based upon

identifying appropriate hadronic degrees of freedom for a particular momentum range

and determining their characteristics.

A variety of methods, each limited in their applicability, have been in use for

some time: QCD sum rules [1, 2, 3, 4, 5] rests on the exploitation of the underlying

symmetries of the strong interaction; effective Lagrangians are the basis for many

model which approximate QCD at low energy; computationally intensive calculations

of physical quantities on a discretized space-time lattice are becoming commonplace.

Common to all these approaches is the special role played by the non-perturbative

vacuum - it links low energy QCD to the phenomenon of spontaneously broken chi-

ral symmetry. Light quarks are approximated as massless (when compared to the

nucleon) and the conservation of their left and right-handedness introduces another

layer of symmetry into the effective Lagrangian. This chiral symmetry is not exact

and can be spontaneously (or dynamically) broken by the non-zero mass of confined

quarks, leading these quarks to develop large effective masses through interactions

with the vacuum. The result is that a nucleon consists not only of three valence-

quarks but includes a complex sea of quark/anti-quarks pairs and gluons. This sea’s

characteristics are determined by the momentum scale involved. The electromagnetic

response of the nucleon has been studied for more than fifty years now with measure-

ments largely focused towards to the extreme upper and lower ends of the spectrum

of momentum transferred to the nucleon. The intermediate region involving moder-
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ately large momentum transfer, where there is significant give and take between soft

and hard physics and therefore between quark-gluon and meson-baryon degrees of

freedom, has long since been identified as a prolific testing ground for models of the

strong interaction.

Deep inelastic scattering (DIS) has proved to be a powerful tool to study the

structure of matter. The experiments at SLAC [6, 7, 8] showed for the first time the

absence of scale dependence in inelastic electron-proton scattering. Later experiments

at larger four-momentum transfer revealed logarithmic scaling violations, which was

explained in terms of QCD and proved QCD as being the correct theory of strong

interactions. In a few GeV energy range where hadronic degree of freedom is dominant

the strong coupling constant becomes large and pQCD becomes inapplicable. This

energy range is where the effect of confinement (no free quarks) make strongly-coupled

QCD highly non-perturbative and it is more easy to work with mesons and baryons.

Despite the significant difference between low and high energy description of the

nuclear dynamics a phenomenon of so called quark-hadron duality is observed which

can be though as a link between this two regimes. The quark-hadron duality was

first observed in data from the early SLAC experiments by Bloom and Gilman [9].

The observations showed a striking similarity between the F2 structure functions

measured in resonance and DIS. Based on this data Bloom and Gilman proposed

that the resonances are not a separate entities but are an intrinsic part of the scaling

behavior of F2. In order to analyze the degree of similarity of the F2 scaling function,

Bloom and Gilman determined a Finite Energy Sum Rule [10, 11] which allowed one

to investigate the phenomenon of quark-hadron quantitatively.

With the development of QCD in the early 1970s, Bloom-Gilman duality was
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reformulated [12] in terms of an operator product expansion (OPE) of moments of

structure functions. This has allowed an expansion of the structure function integrals,

called moments, in terms of the hard scale 1/Q2, clarified many aspects of quark-

hadron duality and it’s violation. However, the OPE is not able to adequately explain

why at low energies the correlations between partons were suppressed, and how the

scaling worked for the resonances.

The advent of high energy, high duty-factor electron accelerators, like the 6 GeV

electron accelerator at Jefferson Lab, has provided quality data in recent years to

test and constrain the theoretical calculations in this field. One of the significant

observation in the JLab data is that Bloom-Gilman duality appears to work at Q2

values as low as 1 GeV2 or even lower. At low Q2 the strong coupling αs is relatively

large compared to it’s value in DIS, but on average the inclusive scattering process

appears to mimic the scattering of electrons from nearly free quarks. These observa-

tions led to renewed interest in quark-hadron duality. In particular, measuring the

F2 structure function in the resonance region at high Bjorken x (x > 0.7, where x is

the longitudinal momentum fraction of the hadron carried by a parton in the infinite

momentum frame) were of great interest since it allowed precision study of the F2

structure function in x > 0.7.

The observation of duality in electron scattering is thought to be a fundamental

property of quarks and hadrons, which raises the question of the existence of du-

ality in neutrino scattering. This is expected because scattering takes place from

the same constituents as in electron case. Weak scattering can provide complemen-

tary information on the quark structure of hadrons, not accessible to electromagnetic

probes. Neutrino-induced reactions also can provide important consistency checks on
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the validity of duality. Since the weak interaction mechanism is different from that of

electromagnetic one the observation of duality may provide additional information.

The MINERvA [13] experiment intends to study duality in neutrino scattering and

can provide data to answer at what kinematic range duality works, in what structure

functions and in what reactions.

Duality in electron scattering have focused mostly on proton. There have been

some experiments that performed measurements on deuterium and heavy nuclei in the

high-x and low to moderate Q2 region [14, 15, 16]. The results of these experiments

revealed additional information about duality. Scaling in nuclei was observed and

was interpreted in terms of local duality where the averaging over the resonances was

accomplished by the Fermi momentum of nuclei inside the nucleus.

The primary motivation of this experiment is to study quark-hadron duality in

electron scattering from nuclear targets in the resonance region as well as to study the

nuclear dependence of R = σL/σT . A significant nuclear dependence of R is predicted

by Miller [17] due to nuclear pions at low values of Q2 ∼ 0.3 GeV2. The results of

this experiment, combined with the results of another experiment, E02-109 [18], will

allow the extraction of σAL through a precise Rosenbluth separation [19] and test if

the pions are really the carriers of the nuclear force as predicted by Miller. Also,

the data will allow us to model the electron−nucleon scattering cross section in the

resonance region which are of great importance for neutrino scattering experiments

since the neutrino scattering structure functions can be extracted if the vector part

is provided from electron scattering.
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Chapter 1

Nucleon Structure

In this section we provide a simple review of the progress made in understanding the

nucleon, introducing the necessary formalism and key concepts along the way. An

excellent overview of the field of nucleon structure can be found in Ref. [20].

1.1 Inclusive Lepton-Nucleon Reactions

Inclusive lepton-nucleon scattering is an important tool with which to study the struc-

ture of the nucleon. In the energy range accessible to modern accelerators leptons are

considered structure-less. Therefore leptons are ideal to probe the the nucleon since

the only unknown is the structure of the nucleon. In inclusive scattering, eN → e′X,

only the final state electron, e′, is registered while the hadronic final state X remains

undetected. In the target rest frame (laboratory frame) the incident electron with

energy E scatters from the target, the scattered electron have angle θ relative to the

direction of the incident beam and energy E ′. In the one photon exchange (Born)

approximation, shown in Fig. 1, the scattering takes place by exchanging a virtual

photon (or W± or Z boson in neutrino scattering). The energy of virtual photon is

given by ν = E−E ′ and the 3-momentum transfer in ~q. Since the photon is spacelike

the virtuality of photon q2 = ν2 − ~q 2 is negative. It is convenient to use positive

variable Q2 = −q2, which is related to the initial and final energy and angle of the

electron.

Q2 = 4EE ′ sin2 θ

2
(1.1)
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Figure 1: Leading order Feynman diagrams for (a) elastic ep scattering and (b)
deep inelastic scattering. In each respective case, the unknown aspects of the proton
structure are parametrized in terms of the form factors, F1(Q2) and F2(Q2), and
parton distributions, q(x) and ∆q(x).

The invariant mass squared of final hadronic state is given by

W 2 = M2 + 2Mν −Q2 (1.2)

In general the cross section for inclusive scattering depends on two variables ν and

Q2. In the Deep Inelastic Scattering (DIS) regime, which will be discussed later, yet

another important variable Bjorken x

x =
Q2

2Mν
(1.3)

is introduced. In the DIS region this variable is the fraction of nucleon momentum

carried by the struck parton in the “infinite momentum frame” − the frame where the

electron is in rest while the nucleon is speeding toward it. For the nucleon 0 ≤ x ≤ 1.

Since the electron-nucleon scattering is electromagnetic in nature the one photon

exchange approximation is a very good approximation. Therefore the differential

cross section for electron nucleon scattering from unpolarized target can be written
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in as

d2σ

dΩdE ′
=
α2

Q4

E ′

E
LµνWµν (1.4)

where α is the fine structure constant. The leptonic tensor Lµν is calculable from

Quantum Electrodynamics and can be written as

Lµν = 2
(
kµk

′
ν + k′µkν − gµνk · k′

)
(1.5)

where k and k′ are initial and final electron momentum, respectively and gµν is the

metric tensor. For an unpolarized initial nucleon the general form of hadronic tensor

can be written as

W µν = W1g
µν +

W2

M2
pµpν +

W4

M2
qµqν +

W5

M2
(pµqν + qνpµ) (1.6)

where Wi are unknown functions of ν and Q2. The structure function W3 and W6

do not contribute in the electron scattering, since W3 violates parity conservation

and W6’s antisymmetric component is multiplied by a symmetric lepton tensor Lµν .

Based on Lorentz and gauge invariance, together with parity conservation in electron

nucleon scattering the hadronic tensor can be written as

W µν = W1(ν,Q2)

(
qµqν

q2
− gµν

)
+
W2(ν,Q2)

M2

(
pµ +

p · q
q2

qµ
)(

pν +
p · q
q2

qν
)

(1.7)

where W1 and W2 are scalar functions of ν and Q2. After contracting LµνW
µν the

cross section can be written as

d2σ

dΩdE ′
= σMott

[
W2(ν,Q2) + 2W1(ν,Q2)tan2 θ

2

]
(1.8)
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where σMott is the Mott cross section for the scattering from a point particle of charge

e and is given by the following formula

σMott =
4α2E ′2

Q4
cos2 θ

2
(1.9)

The structure functions W1 and W2 contain all the information about the struc-

ture of the nucleon and are measured by experiment. These can also be written as

dimensionless functions as

F1(x,Q2) = MW1(ν,Q2), and (1.10)

F2(x,Q2) = νW2(ν,Q2). (1.11)

The two structure functions W1 and W2 are related to the photoabsorption cross

section. This is due to the fact that the virtual photon has two states of polarization,

transverse (helicity ± 1) and longitudinal (helicty 0). Based on this the inclusive

cross section can be written in terms of σT and σL,

d2σ

dΩdE ′
= Γ

[
σT (x,Q2) + εσL(x,Q2)

]
(1.12)

where Γ is the flux of virtual photons and is given by

Γ =
αK

2π2Q2

E ′

E

1

1− ε
(1.13)
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The factor K is given by

K =
2Mν −Q2

2M
(1.14)

and is defined as “equivalent photon energy”. In other words, K is the energy that

would be required to form the final hadron state of the same mass that would be

created by the real photon with energy ν. The ratio of longitudinal to transverse

virtual photon polarization given by

ε =

[
1 + 2

(
1 +

ν2

Q2

)
tan2 θ

2

]−1

(1.15)

and ranges between ε = 0 and 1.

The structure functions F1 and F2 can be written in terms of σT and σL as

F1 =
KM

4π2α
σT , and (1.16)

F2 =
K

4π2α

ν

(1 + ν2/Q2)
(σL + σT ) . (1.17)

The ratio of longitudinal to transverse cross section is given as

R ≡ σL
σT

=
F2

2xF1

(
1 +

ν2

Q2

)
− 1. (1.18)

The structure function F1 is purely transverse as it is related to σT only, while the

F2 is a combination of both σL and σT . A purely longitudinal structure function FL

is defined as

FL =

(
1 +

Q2

ν2

)
F2 − 2xF1 (1.19)
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and R can be written as

R =
FL

2xF1

. (1.20)

Using the ratio R, the F2 structure function can be extracted from the measured cross

sections σ according to

F2 =
σ

σMott

νε
1 +R

1 + εR
(1.21)

provided that R is already known.

Inclusive neutrino-nucleon scattering takes place by the exchange of W bosons.

These are the charged current reactions involving neutrinos: νN → e−X or

ν̄N → e+X. The cross section can be written as [21]

d2σ

dΩdE ′
= G2(2π)2

(
m2
W

m2
W +Q2

)2
E ′

E
L(ν)
µνW

µν (1.22)

where mW is the mass of the W and the tensors correspond to the same definition as

in Eq. 1.4. After contracting the L
(ν)
µνW µν the differential cross section is written as

d2σ(ν,ν̄)

dΩdE ′
=
G2E ′2

2π2

(
m2
W

m2
W +Q2

)2(
2W1 sin2 θ

2
+W2 cos2 θ

2
∓W3

E + E ′

M
sin2 θ

2

)
(1.23)

The difference between electromagnetic and weak scattering is the existence of the

third structure function. This is a result of parity violation in weak interactions.

The structure functions of neutrino scattering can also be written in terms of the

photo-absorption cross sections.

W1 =
K

πG
√

2
(σR + σL) , (1.24)
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W2 =
K

πG
√

2

Q2

Q2 + ν2
(σR + σL + 2σS) , and (1.25)

W3 =
K

πG
√

2

2M√
ν2 +Q2

(σR − σL) . (1.26)

In the case of electron scattering parity invariance forces σR = σL (L and R stand

for left and right, S stands for longitudinal polarization), so there was only one

term σT . One of differences between electron and neutrino scattering is that the

electron−nuclear structure functions have contributions only from vector-vector (VV)

terms, while the neutrino structure functions are a combination of VV and axial-axial

(AA) terms. The vector-axial vector interference term is given by W3 (W3 = 0 in

electron scattering since σR = σL). The significance of comparing neutrino scattering

to electron scattering will be discussed later in next section.

1.1.1 Deep Inelastic Scattering and Quark Parton Model

Elastic electron-nucleon scattering happens when the struck nucleon recoils without

disintegration and the final hadronic mass W is equal to the nucleon mass, W = MN .

Nuclear resonances are excited states of the nucleon and can be seen in the spectrum

of inelastic electrons when W < 2 GeV and Q2 < 4.5 GeV2. At fixed W nuclear the

structure functions go to zero when Q2 →∞,

mNW1(W,Q2)

νW2(W,Q2)


Q2→∞−−−−→ 0. (1.27)
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If instead of keeping W fixed, the variable x (defined in Eq. 1.3) is kept constant for

Q2 > 1 GeV2 and W > 2 GeV the remarkable phenomenon of Bjorken scaling [22]

is observed, see Fig. 2. The structure functions W1 and W2 become independent of

 Q2 (GeV2)

F
2(

x,
Q

2 ) 
+ 

c(
x)
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Figure 2: World data on the structure function F2(x,Q2) of the proton from the
Particle Data Group [23].

the mass scale. It was the measurement of W1 and W2 at SLAC [8] that uncovered

the first evidence that the nucleon consists of structure-less particles, and the cross

section was an incoherent sum of individual elastic scattering cross sections from these

constituents. The data showed that at Q2 values above a few GeV, the structure
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functions depend only on this new variable x:

mNW1(x,Q2)→ F qpm
1 (x),

νW2(x,Q2)→ F qpm
2 (x), (1.28)

Recalling that the structure function for any object with internal structure must

be Q2-dependent, this observation implies that the virtual photons in DIS must be

scattering from point-like, structure-less objects inside the proton. These internal

particles were given the name of partons, it was only later that they were associated

with the quarks and gluons of QCD. The Q2-independent behavior is the property

of Bjorken scaling and arises as a consequence of the asymptotic freedom associated

with QCD at short distances and implies independence of the absolute resolution

scale and hence point-like substructure. The physical significance of x becomes clear

in the infinite momentum frame [21] where nucleon is moving with a momentum

approaching to∞ in the z-direction. In such a frame, relativistic time dilation implies

that during the interaction with the virtual photon, the nucleon can be considered as

a collection of non-interacting partons (the impulse approximation [21]), each with

different fractions of the total nucleon longitudinal momentum. For one of these

partons to absorb a virtual photon of energy ν and mass Q2, it must carry exactly the

momentum fraction x. It is then clear that DIS, in addition to providing evidence for

internal structure of the proton, can be used to measure the momentum distribution

of the partons inside the nucleon (for a review see Ref. [24]). The unpolarized parton

distribution q(x) for both spin-1/2 and spin-0 partons can be related to the nucleon
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structure functions of Eq. 1.28 by the relation:

F qpm
2 (x) = x

∑
i

e2
i fi(x) (1.29)

where the sum is over the various species of partons of charge e2
i and fi(x) is the

probability that the parton has momentum in the interval x → x + dx. The F1(x)

structure function is related to parton distribution functions by the following formula

F qpm
1 (x) = F2(x)/2x =

1

2

∑
i

e2
i fi(x). (1.30)

This relation is known as Callan-Gross relation. From Eq. 1.19 and Eq. 1.20 the R

defined in Eq. 1.20 can be written as

R =
Q2

ν2
=

4M2x2

Q2
. (1.31)

The above equation shows that when Q2 → ∞, R → 0. Since the virtual photons

have helicity ± 1, they can only be absorbed by partons with non-zero spin (this

follows from conservation of angular momentum) otherwise after absorbing a photon

the parton will still have zero angular momentum, violating conservation of angular

momentum, since the total angular momentum of initial state was not zero). This

prediction, that R is small at large Q2 is in agreement with data [25, 26, 27, 28, 29],

but the predicted quadratic reduction of R at small x is not observed. R being small

supports the idea of partons having spin 1
2
.

All of the above discussion assumes that partons don’t have mass or transverse
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momentum. Including these effects [30] R can be written as

R =
4k2

T +m2 ±∆

Q2
(1.32)

where kT is transverse momentum of partons, m is the mass of partons, ∆ is binding

energy of partons. This form is significant since it predicts large values for R in

Q2 =1-5 GeV range. A very nice review about QPM can be found in Ref. [30].

The quark and gluon parton distributions have been accurately measured over

a wide range of kinematics, and have led to important revelations concerning the

internal nature of the nucleon. The most significant of these discoveries is the fact

that the sum of quark momenta only amounts to around 45 % of the nucleon’s total

momentum. If instead of considering the spin-averaged structure functions one intro-

duces the spin-dependent structure function g1, it is possible to define the polarized

parton distributions ∆q(x) and ∆q̄(x) in a similar way:

g1 =
∑
q

e2
q(∆q(x) + ∆q̄(x)). (1.33)

The polarized parton distributions are defined as the difference between quark dis-

tributions with spin parallel/anti-parallel to the proton spin ∆q(x) = q(x)↑ − q(x)↓.

Measurement of these entities led to another discovery: the spin of the quarks only

contribute about 25 % to the total spin of the nucleon. This spin crisis was discovered

at CERN in the EMC experiment [31] and has led to the question: if the quarks only

carry a quarter of the nucleon’s intrinsic spin, where does the remainder come from?
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To answer this, the nucleon spin SN can be decomposed into three components:

SN =
1

2
∆Σ + ∆G+ Lz =

1

2
(1.34)

where ∆Σ is the total spin of the quarks, ∆G the total spin of the gluons and Lz is

the quark’s orbital angular momentum. Recent results of DIS data [32] showed that

contribution of ∆G is compatible with zero.

1.1.2 Scaling Violation in DIS

In the simple quark-parton model partons are assumed to be asymptotically free at

high Q2. In addition if one assumes that number of partons do not change with Q2 the

scaling should not be violated at all. However, it can be seen from Fig. 2 that scaling

is violated since function F2 has some Q2 dependence. The observed scaling violation

is due to interactions between partons and a change in their numbers. At low values

of x the structure function F2 rises as Q2 increase while at large x it decreases. The

scaling violation at low x is caused by gluon splitting to quark-antiquark pairs. As a

consequence, the number of quarks with low values of x increase, which is equivalent of

F2 increasing as Q2 increase. At high values of x where valance quarks are dominant,

gluon radiation shifts quarks to lower x causing F2 to fall with increasing Q2.

This scaling violation can also be explained in terms of the resolution effects

of the virtual photon. At some value of Q2
1 virtual photon can probe structure of

λ ∼ 1/
√
Q2

1. At low x, where sea quarks and gluons carry most of the momentum

of the nucleon, only part of them can be seen by the virtual photon. At Q2
2 > Q2

1

resolution of the virtual photon is higher and is able to resolve more quarks and

gluons increasing the value of F2. At the same time, the higher resolution of virtual
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photon at high x (valance quarks are dominant) means that instead of seeing quarks

with high x the virtual photon can see quarks which radiate a gluon and have their

x lowered by some amount, effectively decreasing F2.

The structure functions are not calculable in the framework of QCD. However,

it is possible to calculate the Q2 evolution of structure functions in perturbative

QCD. This evolution is done according to Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

equations (DGLAP) [33, 34, 35].

Besides scaling violations caused by the self-coupling of gluons, which has a logQ2

dependence, there exist scaling corrections of the form (1/Q2)n. These are called

power corrections. These power corrections to perturbative QCD are due to the non-

vanishing target nucleon mass and higher twist effects. The higher twist effects are

caused by the interactions between the struck quark in the electron-quark scattering

process and the other quarks in the nucleon (Final State Interactions). At large

Q2, the target mass and higher twist effects are negligible. But, these effects may

be significant at low Q2. In order to study QCD scaling violations in F2 structure

function Nachtmann introduced a scaling variable [36],

ξ =
2x

1 +

√
1 +

4M2x2

Q2

. (1.35)

As it can be seen from the expression of Nachtmann scaling variable, as Q2 increase

ξ → x. Using the Nachtmann scaling variable ξ instead of x the scaling of the F2

structure function can be extended to lower Q2. The lower limit of Q2 at which the

QCD is still applicable is not exactly known. However, a comparison of the data

[37] to a QCD analysis suggests that Q2 evolution work well for Q2 values as low as
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0.3 (GeV/c)2.
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1.2 F2 and R in the Nuclear Resonance Region

In the nucleon resonance region W 2 < 4 and Q2 = 0.5-4.5 GeV2, the non-perturbative

higher twist and target mass effects may be quite significant. This is expected since

the resonances are bound states of quarks and gluons and necessarily involve higher

twists. Therefore, the behavior of F2 and R in the resonance region may be different

from that in the DIS region. Even at high values of Q2, R may not be small due to

strong gluon binding effects (see Ref. [30]).

The nuclear dependence of R in the resonance region has never been determined

experimentally. The only data that exists is in the DIS region. In Fig. 3 the world

data on R is shown for all nuclear targets. The left plot in Fig. 3 shows the world’s

data on R for all nuclear targets in the DIS region. The right plot in Fig. 3 shows

all available data on the nuclear dependence of R in the DIS region. The errors are

very large and none of the data are in the resonance region. Note that the data in

Fig. 3 (right) were taken at high values of W 2 in the DIS region. At these high W and

Q2 values, the overall value of R is generally quite small. Therefore, it is difficult to

discern any nuclear effects. The measurements of the present experiment are at low

Q2, where R is larger and a nuclear dependence should be easier to discern. The lines

in Fig. 3 (right) represent the small projected uncertainties of the current experiment.

Precision measurements of R in the resonance region at moderate to low Q2 will

greatly aid efforts to develop a reliable global description of R. The new data on R,

F2, F1, and FL in the resonance region will also help efforts to develop global models

to describe all unpolarized cross sections, covering the range from large x, low Q2 to

smaller x, low Q2. (These models are useful for electron−nuclear scattering model

development, and the extraction of parton distribution functions.) A detailed study
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of F2 and R = σL/σT on nuclear targets in the resonance region is an important

ingredient in forming an integrated description of charged lepton and neutrino scat-

tering cross-sections. High rate neutrino beams now under construction or planned at

Fermilab and J-PARC will allow the first precision experimental comparisons of elec-

tron and neutrino cross sections and present and planned future neutrino oscillation

experiments will use these results to predict event rates.

The full program of studies requires first additional precise electron scattering

data, in particular σL and σT (or equivalently F2 and R) on nuclear targets (ma-

terials suited for future neutrino oscillation detectors, including water [38], hydro-

carbons [39], liquid argon and steel), where the most precise high energy neutrino

cross sections have been measured [40]) in the relevant kinematic regime. Later, as

the new generation of high rate neutrino beams at Fermilab and J−PARC become

available, the approach can be directly validated with comparisons to data from high

rate neutrino cross−section experiments on the same targets [13].

Additionally, R will be used to investigate the phenomenon of quark−hadron dual-

ity (discussed in the next section), which suggests that, on average, electroproduction

structure functions in resonance region scale the same way as in the DIS region.
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  −
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Figure 3: Left: A compilation of the world’s published data on R at high Q2 in
the DIS for both nucleons and nuclei. Right: The SLAC E140 data on the nuclear
dependence of R in the DIS region presented in the form RA−RD (The magenta lines
in the figure on the right represent the projected uncertainties of this experiment.)
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1.3 Quark Hadron Duality

At high energies perturbative QCD methods fully describe experimental results and

at low energies chiral perturbation theory allows the study of low-energy dynamics of

QCD. A phenomenon of quark-hadron duality, first discovered by Bloom and Gilman,

is observed connecting these two regimes. In intermediate kinematics, a wide variety

of reactions can be described simultaneously by single particle (quark) scattering, and

by exclusive resonance (hadron) scattering.

1.3.1 Bloom-Gilman Duality

In the early 1970s, when analyzing inclusive electron-proton scattering data from

SLAC, Bloom and Gilman observed [9, 41] a remarkable connection between structure

function νW2(ν,Q2) in the nucleon resonance region and in the deep inelastic region.

It was found that the resonance structure function averaged over the scaling variable

ω′ was approximately equal to deep inelastic structure function. The scaling variable

is given by the following formula

ω′ =
2Mν +M2

Q2
= 1 +

W 2

Q2
= ω +

M2

Q2
(1.36)

where M is the nucleon mass. The choice of ω′ over ω = 1/x was not clear at the

time it was used. If one looks at the Nachtmann variable defined in Eq. 1.35 it will

be clear that using ω′ for scaling parameter is somewhat equivalent of using 1/ξ.

This new variable ω′ was found without theoretical guidance but an extraction of the

Nachtmann variable ξ revealed a similarity. The Bloom and Gilman scaling variable

ω′ included additional Q2 dependence that incorporates the finite target mass effects.

Using the variable ω′, Bloom and Gilman were able to make the first quantitative
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observations of quark-hadron duality in inclusive electron scattering.

The original data on the proton νW 2(ν,Q2) structure function in the resonance

region are illustrated in Fig. 4 for several values of Q2 from 1.5 to 3.0 GeV2. In

the resonance region there are about twenty nucleon resonances, but only three of

them are visible in measured inclusive electron-proton cross section. The first peak

corresponds to a single resonance P33(1232), while other resonances are composed of

overlapping states. The second resonance region comprises from the S11(1535) and

D13(1520) resonances. The data presented in Fig. 4 are from inclusive measurements,

and may contain tails from heavier resonances as well as some nonresonant compo-

nents. The νW 2(ν,Q2) structure function data were extracted from the measured

cross sections using a fixed value of the longitudinal to transverse cross section ratio,

R = σL/σT = 0.18.

The scaling curve shown in Fig. 4 is a parametrization of the high-W (high-Q2)

data available in the early 1970s [42]. It can be seen that the resonance data are clearly

seen to oscillate about, and average to, the scaling curve. Based on the similarity of

the structure functions in the resonance and DIS region Bloom and Gilman concluded

that the resonance data are, on average, equivalent to the scaling curve. Also, the

agreement of resonance region data gets better with increasingQ2. These observations

led Bloom and Gilman to conclude that resonances are not a separate entity but are

an intrinsic part of the scaling behavior of νW2(ν,Q2) [41].

In order to quantify the similarity of scaling functions, Bloom and Gilman wrote

a finite energy sum rule [41] at fixed Q2 for νW2(ν,Q2) . They equated the integral
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Figure 4: Early proton νW 2 structure function data in the resonance region, as a
function of ω′, compared to a smooth fit to the data in the scaling region at larger
Q2. The resonance data were obtained at Q2 = 1.5, 1.75, 2.75, 3.0 GeV2, for the
longitudinal to transverse ratio R = 0.18. (Adapted from Ref. [41].)

over ν of νW2 in the resonance region, to the integral over ω′ of the scaling function:

2M

Q2

∫ νm

0

νW2(ν,Q2)dν =

∫ 1+W 2
m/Q

2

1

νW2(ω′)dω′. (1.37)

In this equation the upper limit on the ν integration, νm = (W 2
m −M2 + Q2)/2M ,

corresponds to the maximum value of ω′ = 1 +W 2
m/Q

2, where Wm ∼ 2 GeV, so that

the integral of the scaling function covers the same range in ω′ as the resonance region

data. The finite energy sum rule allows the area under the resonances in Fig. 4 to be

compared to the area under the smooth curve in the same ω′ region to determine the

degree to which the resonance and scaling data are equivalent.

A comparison of both sides in Eq. 1.37 for Wm = 2 GeV showed that the relative

differences ranged from ∼ 10% at Q2 = 1 GeV2, to ∼ 2% beyond Q2 = 2 GeV2 [41].

This demonstrates the equivalence on average of the resonance and deep inelastic

regimes. Using this approach, Bloom and Gilman′s quark-hadron duality was able to



27

qualitatively describe the data in the range 1 < Q2 < 10 GeV2. The resonances in

inclusive inelastic electron-proton scattering do not vanish with increasing Q2 relative

to the “background” beneath them, but instead fall at about the same rate with

increasing Q2. The nucleon resonances are therefore strongly correlated with the

scaling behavior of νW2.

1.3.2 Duality in Nuclei

Duality studies have been studied mostly on protons. There are handful of experi-

ments in the high−x and low to moderate Q2 region that tried to study duality on

deuterium and heavy nuclei [16, 15, 14]. Inclusive electron-nucleus experiments at

SLAC designed to probe the x > 1 region in the FA
2 structure function concluded

that the data began to display scaling indicative of local duality [14]. An explanation

for the origin of ξ scaling was proposed by the Benhar and Liuti [43]. The authors

suggested that the observed scaling might instead come from an accidental cancella-

tion of Q2 dependent terms, and would occur only for a limited range of momentum

transfers (up to Q2 ∼ 7 GeV2).

In order to study this effect and confirm the observation of the experiments done

at SLAC an experiment was done at Jefferson Lab [44]. A plot shown in Fig. 5

is shown to illustrate the results of that experiment. Here, F Fe
2 /A is plotted as a

function of ξ at several values of Q2 (x = 1). An important thing to realize from the

first glance is the absence of resonance structure, which is clearly observed for the

free nucleon. Also, the quasi-elastic peak is not visible. The absence of a distinct

quasi−elastic and resonance structure is a result of Fermi smearing. It was discussed

in the previous section that structure functions averaged over the nuclear resonance

region resembles the structure function of DIS. In the case of nuclei, it appears that
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Figure 5: The νW Fe
2 = F2 structure function for iron (per nucleon) as a function

of ξ. The data were obtained at fixed electron scattering angle, and the quoted Q2

(in units of GeV2) are the values for x = 1. The arrows indicate the values of ξ
corresponding to the quasi-elastic peak for each setting. (Figure from Ref. [16])

averaging is done by Fermi motion of nucleons inside the nuclei. As the resonance

structure is smeared by Fermi motion the scaling can be observed at all ξ and it

is impossible to differentiate DIS and resonance regimes other than by calculating

kinematics. It can be seen from Fig. 5 that all data except the lowest Q2 fall on a

smooth scaling curve.

Qualitatively, the nuclear effects in the resonance region appear to be similar to

those in the deep inelastic region. The nuclear dependence of the scaling structure

functions are not expected to be the same as the nuclear dependence of resonance

production. This is somewhat surprising, but perhaps it is another hint that quark-

hadron duality can be applied in inclusive nuclear scattering too. Based on the data

of ξ-scaling in nuclei, it can be implied that Fermi motion is averaging the nucleon

electromagnetic response over a finite energy range (for the proton this was done
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using Eq. 1.37).

There is limited data available in the nuclear resonance region and at the same

time the heavy model dependence at large x does not allow duality studies for nuclei

at the same level as it is done for proton. The results of the current experiment will

complement the existing data and allow precise studies of the nuclear dependence of

quark-hadron duality.

1.4 Theoretical Basis of Duality

At the time when Bloom-Gilman duality was observed QCD was not yet fully de-

veloped. In order to give theoretical explanation to it, phenomenological models or

models based on hadronic degree of freedom were developed. After the development

of QCD and the recognition that it is a real theory of strong interactions, the phe-

nomenon of duality was reanalyzed using the Operator Product Expansion (OPE).

This is discussed in the next section.

1.4.1 Moments of Structure Functions

Before starting a discussion of the Operator Product Expansion let’s introduce

Cornell-Norton [45] moments first. The n-th moments of the spin-averaged F1, F2

and FL structure functions are defined as:

Mn
1 (Q2) =

∫ 1

0

dx xn−1F1(x,Q2) (1.38)

Mn
2,L(Q2) =

∫ 1

0

dx xn−2F2,L(x,Q2). (1.39)
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In this definition the n = 1 moment of the F1 structure function in the parton

model counts quark charges, while the n = 2 moment of the F2 structure function

corresponds to the momentum sum rule. In the Bjorken limit, the moments of the

F1 and F2 structure functions are related via the Callan-Gross relation, see Eq. 1.30,

as M
(n)
2 = 2M

(n)
1 . The Cornwall-Norton moments defined in terms of the Bjorken

x scaling variable are appropriate in the region of kinematics where Q2 is much

larger than typical hadronic mass scales, where corrections of the type M2/Q2 can

be neglected. In the next section it will be clear how the structure function moments

can be utilized to test the validity of quark-parton duality at small Q2 where the

contributions from higher twist effects are not negligible.

1.4.2 Operator Product Expansion

The theoretical basis for describing Bloom-Gilman duality in QCD is the operator

product expansion (OPE) of Wilson [46]. Based on OPE, sum rules are derived which

can be used to analyze the structure functions and their moments. The important

feature of these sum rules is model independence. They are derived using only some

very general results from quantum field theory.

The OPE allows one to evaluate a products of operators in the asymptotic limit.

The product of two operator-valued fields, A(x) and B(y), can be expressed as an

infinite series

A(x)B(y) =
∑
n

Cn(x− y)On(x) (1.40)

where Cn(x − y) are analytic functions of x − y and On(x) are local fields. This

expansion is valid as long as x− y is small enough or equivalently, Q2 is large enough

compared to relevant mass scale. At any fixed values of x − y only finite number of
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terms contribute in the above expansion.

According to the OPE, at large Q2 >> Λ2
QCD, the moments of the structure

functions can be expanded in powers of 1/Q2. The coefficients in the expansion

are matrix elements of quark and gluon operators corresponding to a certain twist,

τ , defined as the mass dimension minus the spin, n, of the operator. For the n-th

moment of the F2 structure function, M
(n)
2 , for example (see Eq. (43)), one has the

expansion

M
(n)
2 (Q2) =

∞∑
τ=2,4,...

A
(n)
τ (αs(Q

2))

Qτ−2
, n = 2, 4, 6... (1.41)

where Anτ are the matrix elements with twist less than τ . The Q2 dependence of the

matrix elements can be calculated perturbatively, with Anτ expressed as a power series

in αs(Q
2).

The moments of structure functions defined in Eq. 1.39 can be used in a QCD

analysis. It must be emphasized that OPE analysis is perturbative since the structure

functions are expanded in terms of a hard scale, 1/Q2. The usefulness of OPE is that it

allows a separation of “soft”, nonperturbative physics contained in parton correlation

functions, from the “hard” scattering of the probe from the partons [47].

The relation between the higher-twist matrix elements and duality in electron

scattering was explained in the paper of De Rujula, Georgi and Politzer [12, 48].

They explained the empirical observation of Bloom-Gilman duality in terms of the

twist expansion of the structure function moments in QCD. Examining Eq. 1.39 they

saw that the lowest moment corresponding to n = 2 is the Bloom-Gilman integral

defined in Eq. 1.37. Scaling (Q2 independence of the F2 structure function) is only

observed at high enough values of Q2, which means that at low Q2 duality should be

violated. At high Q2, where the scaling of the structure function is observed, moments
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become independent of Q2. In order for the integrals of the structure functions at

higher momentum to be equal to the integral of the structure functions at low Q2, the

higher-twist contributions must be small or cancel. This is equivalent to saying that

duality can exist if the interactions between the scattered quark and the spectator

system is suppressed.
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1.5 The Nuclear Dependence of R

Pions are thought to be the carrier of the nuclear force at nucleon distance scale

and hence are the dominant agent responsible for the binding of nuclei. The Yukawa

interaction can be used to describe the strong nuclear force between nucleons carried

by pions. This was strengthened via the observation of very significant effects of pion

exchange currents in a variety reactions involving electromagnetic probes of nuclei.

In the EMC experiment [49] it was discovered that the structure function F2 depends

on the mass number A of the target. This effect has been studied by comparing

F2 measured on bound nucleons in nucleus A and deuterium. This implies that

there is a significant difference between the parton distributions of free nucleons and

nucleons in a nucleus. There were several attempts to understand the observed effect

in terms of nuclear pions but all of them failed to explain the experimental data at

all kinematics. These failures to observe the influence of nuclear pions caused a crisis

for nuclear theory [50].

One possibility for verification arises from measurements of the ratio R, of scatter-

ing of virtual photons in a longitudinal or transverse polarization state , R = σL/σT

from nuclei. A large value of σL, and the corresponding violation of the Callan-Gross

relation Eq. 1.30, indicates the presence of nuclear bosons as fundamental constituents

of nuclei [17]. A measurement of R in the region covered by this experiment combined

with the data of experiment E02-109 [18] can provide information about the dynamics

of the internucleon force inside nuclei as predicted by Miller [51]. The calculations

performed by Miller [51] predict a significant pion excess enhancement in the σAL/σ
D
L

ratio at low Q2 and moderate xBj, as shown in Fig. 6. The phenomenology is de-

scribed in the reviews [52, 53, 49]. The main point is that the quark and anti-quark



34

Figure 6: Plot from G. A. Miller [51] showing the predicted sensitivity of the inclusive
longitudinal cross section ratio of iron to deuterium due to pion excess.

distributions can be given as convolution of the q, q̄ distributions in a given nuclear

hadronic constituent with the light cone distribution functions: fπ/A(y), fπ/N(y), the

probability to find an excess pion in the nucleus (A) or nucleon (N), with a plus-

momentum given by ymN . The function fπ/N(y) is constrained by the data on the

nucleon sea which restrict the ū and d̄ distributions to be similar [54, 55].

The longitudinal cross sections for nuclear and deuterium targets are related by

the formula [51]

σAL
σDL

= 1 + x
2

3
fπ(ξ)

ν2

(Q2 + ν2)

F 2
π

FD
2 RD

(1 +RD) (1.42)

where F 2
π is the pion form-factor. This equation is plotted shown in Fig. 6 for iron

an target. The largest sensitivity to pions is predicted at Q2 = 0.3 GeV2 and quickly

vanishes with the increase of the Q2 due to the falloff of the pion form-factor. The

results of this experiment, combined with the results of the E02-109 [18] experiment,
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will allow the extraction of σAL and σDL (Q2 ≈ 0.3 GeV2, W 2 < 4.0 GeV2). The

expected enhancement in the σAL/σ
D
L ratio at low Q2 will be regarded as an indication

of pion excess in heavy nuclei as suggested by Miller [51].
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1.6 Neutrino Scattering

Neutrino interactions with nuclei are important for the determination of the internal

structure of the nuclear matter and complement deep inelastic electron scatterings ex-

periments. Electron scattering experiments are sensitive to the average of the square

of the electric charge of the nucleon constituents, while neutrino experiments measure

their weak structure. In particular, neutrino(antineutrino)−nucleus scattering can be

used to understand the flavor composition of nuclei as neutrino scattering is sensitive

to specific flavors of quarks.

It is also interesting to test if Bloom-Gilman duality is observed in neutrino scat-

tering. It was argued in Ref. [56] that duality should also exist in weak structure

functions. This can only be confirmed by experiment and there is not enough data

in the resonance region to draw a final conclusion. The interaction of neutrinos with

the nuclear matter is weak and cross sections are small which requires the use of

nuclear targets. Also nuclear effects in DIS have been studied using only muon and

electron beams. Neutrino scattering experiments were only done using heavy nuclear

targets such as iron target-calorimeters. Results of these experiments indicate that

the nuclear corrections for e−A and ν −A are different. Among these differences is

evidence for quark-flavor dependent nuclear effects [57].

The MINERvA [57] experiment seeks to measure low energy neutrino interactions

both in support of neutrino oscillation experiments and also to study the strong

dynamics of the nucleon and how the nuclear medium affects these interactions.
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1.6.1 Structure Functions in DIS

Deep inelastic neutrino structure functions are directly related to the parton distri-

bution functions and the same parton distribution functions determine the charged

lepton scattering. For electron scattering the unpolarized parton distribution q(x) for

both spin-1/2 and spin-0 partons is related to the nucleon structure functions accord-

ing to Eq. 1.29 where the sum is over the various species of partons of charge ei and

fi(x) is the probability that the parton has momentum in the interval x → x + dx.

Assuming that partons have quantum numbers of quarks and using the Eq. 1.29, F2

electron scattering structure functions of proton and neutron can be written as:

1

x
F ep

2 =
4

9
[up(x) + ūp(x)] +

1

9
[dp(x) + d̄p(x)] +

1

9
[sp(x) + s̄p(x)] (1.43)

1

x
F en

2 =
4

9
[un(x) + ūn(x)] +

1

9
[dn(x) + d̄n(x)] +

1

9
[sn(x) + s̄n(x)] (1.44)

where proton is indicated as p and neutron as n. Since u, d quarks and proton,

neutron both form isospin doublets one can see that up = dn (call this u), dp = dn

(call this d), sp = sn (call this s). Here the contribution of other quarks is small

and is not considered. Taking into account the isospin symmetry described above the

structure functions can be written as:

1

x
F ep

2 =
4

9
(u+ ū) +

1

9
(d+ d̄+ s+ s̄) (1.45)

1

x
F ep

2 =
4

9
(d+ d̄) +

1

9
(u+ ū+ s+ s̄). (1.46)
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For neutrino nucleon scattering F2 can also be written in terms of quark distribu-

tions. Charged current neutrino scattering is different from the electron scattering

since it only couples to specific flavors of quarks, in particular for neutrino proton

scattering only d, s, ū, c̄ quarks contribute, and in neutrino-neutron scattering only

u, c, d̄, s̄ quarks contribute. Neutrino scattering structure function can be written as

F2(x) = x
∑
i

fi(x), (1.47)

where only specific quarks contribute as discussed above. At energies where the charm

quark production is absent or negligible and the Cabibo angle [58] (The Cabibo angle

is the probability that one flavor of quark will change into other flavors under the

action of the weak force) is zero, the proton structure function can be written in terms

of quark distributions as

1

x
F νP

2 (x) = 2[d(x) + ū(x)] (1.48)

1

x
F νN

2 (x) = 2[u(x) + d̄(x)] (1.49)

where the factor 2 comes from the fact that weak current contains both vector and

axial parts. Using equations 1.45, 1.46, 1.48, 1.49 the structure functions of electron

and neutrino scattering can be related to each other as

[
F eN

2 + F eP
2

F νN
2 + F νP

2

]
(x) =

5

18

[
u+ ū+ d+ d̄+ 2/5(s+ s̄)

u+ ū+ d+ d̄

]
. (1.50)
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If the contribution of strange quarks is negligible (x > 0.2) the structure functions are

related by a factor of 5/18, known as the 5/18ths rule. The observation that electron

scattering and neutrino scattering structure functions are approximately related by a

factor of 5/18, was a significant triumph for the QPM. An interesting and very useful

review about this QPM can be found in [21].

1.6.2 Neutrino Scattering in Resonance Region

In the previous section relating the structure functions of electron and neutrino scat-

tering from the nucleon in DIS region was rather straightforward. The same can not

be said in the nuclear resonance region. In the resonance region higher order QCD

effects are not negligible as in DIS and it is not possible to consider nucleons as non-

interacting group of partons. Since the electromagnetic and weak interactions are

sensitive to different types of partons (quarks) the relationship between the structure

functions in these reactions can only be established if specific conditions are satisfied.

For example a neutrino beam can convert a neutron into a proton, but it cannot

convert a proton into a neutron (and vice versa for an antineutrino beam). From the

conservation of the vector current, the vector structure functions measured in electron

scattering can be related to their counterparts in neutrino scattering for only specific

isospin final states. The axial structure functions in neutrino scattering can only be

determined if the vector part is provided from electron scattering.

In order to give a general idea how the structure functions in electron scattering

can be related to their counterparts in neutrino scattering, electron scattering cross

section is written in terms of helicity amplitudes,

1

ΓT

d2σ

dΩdE ′
=

1

2

(
σ

1/2
T + σ

3/2
T

)
+ εLσL (1.51)
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where ΓT is the virtual photon flux, εL describes the degree of longitudinal polarization

of the photon, σ
1/2
T is the total transverse absorption cross section with helicity 1/2

for the photon-nucleon system, and σ
3/2
T is the helicity 3/2 cross section. Here σL is

the total cross section for the absorption of a longitudinal (scalar) photon. Analyses

of electroproduction data give numerical values for cross sections at the peak of each

resonance [59, 60],

σT (W = MR) =
2mN

ΓRMR

(
A2

1/2 + A2
3/2

)
(1.52)

σL(W = MR) =
2mN

ΓRMR

Q2

q2
z

S2
1/2 (1.53)

where ΓR is the width of the resonance, and MR is the mass of the resonance. Using

these formulas one can relate electromagnetic to weak form factors using isotopic

symmetry. Photons can have two isospin states |I, I3 >= |1, 0 > and |I, I3 >= |0, 0 >.

The isovector component belongs to the same isomultiplet with the vector part of the

weak current. Each of the amplitudes A3/2, A1/2, S1/2 can be further decomposed

into three isospin amplitudes [61]. A general helicity amplitude on a proton (Ap) and

neutron (An) target has the decomposition

Ap = Ap(γp→ R+) = b−
√

1

3
a1 +

√
2

3
a3 (1.54)

An = An(γn→ R0) = b+

√
1

3
a1 +

√
2

3
a3. (1.55)

For the weak current we have only an isovector component of the vector current,
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therefore the b amplitude never occurs in weak interactions. The a1 and a3 can be

found from weak interactions according to the following formulas

A(W+n→ R(1)+) =
2√
3
a1, (1.56)

A(W+p→ R(3)++) =
√

2a3, (1.57)

A(W+n→ R(3)+) =

√
2

3
a3. (1.58)

Comparing Eq. 1.56 with Eq.1.54 it can be seen that for the isospin 1/2 resonance

the weak amplitude satisfies the equality A(W+n → R(1)+) = A1
n − A1

p. Since the

amplitudes are linear functions, the weak form-factors are related to electromagnetic

form-factors with a simple relation

I = 1/2 : CV
i = Cn

i − C
p
i . (1.59)

For the isospin 3/2 resonances the A3
n(W+n → R(3)+) = A2

p(W
−p → R(3)0) =√

2/3a3. The weak form-factors are

I = 3/2 : CV
i = Cn

i = Cp
i . (1.60)

The above description of relating the weak and electromagnetic structure functions

in nuclear resonance region is thoroughly described in Ref. [61]. The article is self-

contained and facilitates writing simple programs to reproduce the cross sections.

The MINERvA [13] experiment will perform a high statistics neutrino-nucleus
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scattering experiment using a fine-grained detector specifically designed to measure

low-energy neutrino-nucleus interactions accurately. The high-luminosity NuMI beam

line at Fermilab will provide energies spanning the range ∼ 1−15 GeV, over both the

resonance and deep inelastic regimes, making MINERνA a potentially very important

facility to study quark-hadron duality in neutrino scattering. The results of this

experiment will be used in future analysis of neutrino data (including MINERvA) in

order to investigate quark hadron-duality in the axial structure functions of nucleons

and nuclei.
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Chapter 2

Experimental Apparatus

2.1 Overview

The Jefferson Laboratory Hall C experiment E04-001 [62] was performed in May-June

2007. The purpose of this experiment is to measure the longitudinal-transverse (L-T)

separated structure functions F2 and R = σL/σT from nuclear targets in the resonance

region. The targets used include carbon-12, aluminum-27, iron-56 and copper-64. The

data were taken at 2.1, 3.2, 3.3, 4.1, 5.1 GeV beam energies and electron scattering

angle ranging from 12o to 76o. The scattered electron was detected in the High

Momentum Spectrometer (HMS). The kinematic coverage of the experiment is shown

in Fig. 7 and is listed in Appendix.
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Figure 7: Kinematic coverage of E04-001 experiment.
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2.2 The Thomas Jefferson Accelerator Facility

A
B

C
Halls   


Experimental

45MeV Injector

(2 1/4 Cryomodules)

0.4GeV Linac

Central He- 

Liquefier.

Extraction

Elements

0.4GeV Linac

Recirc. Arcs

(20 Cryomodules)

(20 Cryomodules)

Figure 8: Lay-out of the CEBAF facility. The electron beam is produced at the
injector by illuminating a photocathode and the produced photoelectrons are then
accelerated to 67 MeV. The beam is then further accelerated in each of two super-
conducting linacs, through which it can be recirculated up to five times. The beam
can be extracted simultaneously to each of the three experimental halls.

The Continuous Electron Beam Accelerator (CEBAF) of JLab [63] was designed

to deliver a continuous beam of electrons simultaneously to three experimental end-

stations. A diagram of the racetrack shaped accelerator is given in Fig. 8. The source

of the injector is a 100 kV photocathode guns [64] with a maximum beam current

of a few mA. Next, the beam is incident on a chopping aperture which contains slits

of different sizes, one for each of the experimental Halls A, B and C. The width of

these slits determines the beam current that is delivered to each Hall. The chopper

sweeps the beam over the slits with a rotating electric field with a frequency of 1497

MHz. The beam then enters the first superconducting accelerator section, where it

is accelerated to 67 MeV and then injected into the North Linac. The North Linac is

a string of 20 cryomodules, with each cryomodule containing eight super-conducting

niobium cavities. These cavities are kept super-conducting by 2 K Helium coolant
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from the Central Helium Liquefier (CHL). Klystrons excite the cavities and establish

electric fields which accelerate the electrons as they travel through them. At the end

of the North Linac, the electron beam has a nominal energy of 600 MeV, although by

careful tuning of the accelerating electric field of the cavities, this energy can be raised

or lowered. Next, the beam enters the east magnetic recirculation arcs, where it is

bent in a semi-circle to the South Linac. Here again the beam is accelerated through

a string of 20 cryomodules. At the end of the South Linac, the beam can be extracted

for use in any of the experimental halls or it can proceed around the west recirculation

arcs for another pass around the accelerator. The beam can traverse the accelerator a

maximum of five times, gaining a nominal 1200 MeV of energy with each pass around

the machine. In the North and South Linacs the different energy beams, resulting

from each pass around the accelerator, travel in the same beam-line. However, the

different energy beams require different bending fields in the recirculation arcs. When

the beams reach the arcs they are separated by momentum and each one goes through

a different arc. At the end of the arcs, the beams are recombined into the same beam-

line again. When the beam is of the energy requested by the experimental halls, it is

extracted from the accelerator to the Beam Switch Yard (BSY). There the three sets

of beam bunches are separated into the appropriate experimental hall beam-line by

deflecting cavities operating at 499 MHz. Each hall receives a short (1.67 ps) train of

pulses with a frequency of 499 MHz. The beam has a very small transverse size ( ≥

200 µm (FWHM) at 845 MeV). The fractional energy spread (∆E/E) is at the 10−4

level.



46

2.3 Beam-line Apparatus

Electron beam parameters are measured by several devices (see Fig. 9) situated along

the beam-line, upstream of the target, near the entrance to the hall. Measurements

of position, current, energy and longitudinal polarization are possible, with some

intentional redundancy to allow cross checking. Some typical beam parameter values

for the present experiment and the uncertainties associated with their measurement

are given in Table 1

Beam Parameter Beam-line Measured Accuracy(absolute)

Device(s) Value

Position x (at target) BPM/Superharp - ≤200µm

Position y (at target) BPM/Superharp - ≤200µm

Current BCM 30-80 µA ≤3×10−3µA

Energy ARC - 2×10−4 GeV

Table 1: Typical values measured for the various electron beam properties described
in the text, together with the associated accuracies.

To measure the absolute value of the energy of the electrons in the beam, eight

dipole magnets between the beam switch-yard and the hall entrance deflect the elec-

trons through a nominal angle of 34.3◦. Wire scanners before and after the magnets

accurately determine this angle, which along with the measured arc field integral∫
Bdl (magnetic field integral over the path of the electron beam), is used to calcu-

late the electron momentum.

2.3.1 Beam Position Monitors

So-called superharps make a destructive but extremely precise measurement of the

beam position and profile. A superharp consists of three tungsten wires, two vertical
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Figure 9: Schematic lay-out of Hall C, indicating the location of the the raster, the
beam energy measurement system, the beam current monitors (BCM) and the beam
position monitors (BPM) upstream of the target.

that measure the horizontal beam profile and one horizontal wire that measures the

vertical beam profile, mounted in a frame which is connected to an arm that can be

moved in and out of the beam. Analog-to-Digital converters (ADCs) connected to

each wire read the signals on the wires as the frame is moved in and out of the beam,

while a position encoder determines where the wire intercepts the beam. With the

position information and the ADC measurements the position and profile of the beam

can be measured. More detailed information about the superharps can be found in

Ref. [65].

The beam position is also measured with three Beam Position Monitors (BPMs)

which provide non-destructive beam position information along the beam line which

are used during data taking; see Fig. 10. A BPM is a cavity containing two pairs
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of antennae perpendicular to each other and inclined by ±45◦ with respect to the

beam

45
o

X

X’

Y’
Y

antennaeantennae

Figure 10: Diagram of the orientation of the BPM antennae.

horizontal plane. When the beam passes through the cavity parallel to the symmetry

axis both pairs of antennae pick up the frequency of the beam. Each antennae gives

a signal proportional to the distance that the antennae is positioned from the beam.

The beam position is derived from the difference over the sum of the signals from an-

tennae on opposite sides of the beam. This method provides a position measurement

independent of beam current. Since this is a position relative to the central axis of the

beam line these measurements must be compared to the Superharp measurements to

determine the absolute position of the beam during data taking. The final accuracy

of the beam position measurements is ±1.0 mm, with a relative position uncertainty

of 0.1-0.2 mm. More detailed information about the BPMs can be found in Ref. [66].

2.3.2 Beam Current Monitors

The Hall C beam line has four devices installed to measure the beam current: three

microwave cavity Beam Current Monitors (BCMs), and a parametric DC current

transformer (Unser monitor).

The BCMs measure the integrated beam current in two second intervals, and their
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output voltage, as well as the output voltage of the Unser, is converted into frequency

with a voltage-to-frequency converter, and read out by a scaler. A BCM consists of

a cylindrical wave guide, mounted in the beam line so that the beam travels along

the axis of the cylinder. The dimensions of the cylinder were selected so that the 499

MHz structure of the beam excites the 1497 MHz TM010 mode in the wave guide.

The resonance frequency is picked up by wire loop antennae, and converted to a DC

voltage through a RMS-to-DC converter. The cavities have a stable gain and offset,

and a high signal/noise ratio, but cannot measure the absolute current, because the

output power as a function of the measured beam current depends on the cavity

impedance, quality factor, and the signal cable attenuation. The absolute calibration

is done with the Unser monitor.

The Unser monitor is installed between BCM1 and BCM2. It cannot be used for

charge measurements because it is sensitive to thermal fluctuations, resulting in large

drifts in its zero-offset. However, because the gain is stable and well measured, the

Unser monitor is used to calibrate the gain of the BCMs. More information about

the Unser monitor can be found in Refs. [67, 68].

2.3.3 Beam Raster

The electron beam generated at CEBAF is a high current beam with a small trans-

verse size (≤ 200 µm FWHM). It can deposit a large amount of power in the target.

In order to prevent local boiling in the cryotargets or melting of the solid targets the

beam is rastered before striking the target. For that purpose the beamline is equipped

with a pair of fast raster magnets, located 25 meters upstream of the target. The first

set rasters the beam vertically and the second horizontally. The current driving the

magnets is varied sinusoidally, at 17 kHz in the vertical direction, and 24.2 kHz in
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the horizontal direction. The frequencies are chosen to be different so that the beam

motion does not form a stable (Lissajous) figure at the target, but it moves over a

square area. The amplitude of the raster pattern on the target was ±1.0 mm in both

directions during the present experiment. More details about fast raster can be found

in Ref. [65].

2.4 Experimental Hall C

Hall C is the second largest of the three experimental halls at Jefferson Lab. It

contains two spectrometers the High Momentum Spectrometers (HMS) and the Short

Orbit Spectrometer (SOS) located on either side of the electron beam-line. The

spectrometers can be moved clockwise or counter-clockwise about the target position

over a wide range of angles. The HMS has a minimum angle of 10.5◦ with respect

to the beam-line and a maximum central angle of 165◦. The SOS has now been

dismantled. Between the beam switch-yard and the target (which sits at the center

of the hall) there are various devices to monitor and measure beam current, beam

position, beam energy and beam polarization. A schematic of Hall C is shown in

Fig. 11. At the pivot point of the two spectrometers sits the cryotarget, encased

within a cylindrical aluminum scattering chamber. The electron beam is incident

on the target through the beam−line. The targets used for this experiment were

deuterium, carbon, aluminum, iron and copper. Scattered particles were detected by

HMS detector. The primary beam continues along the path of the beam-line to the

beam dump.
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SOS

Beam line
HMS

Figure 11: Schematic layout of Hall C.

2.5 Target

The targets are located in a cylindrical aluminum scattering chamber, which is in-

stalled at the spectrometer pivot. The scattering chamber has an inner radius of

61.6 cm and a height of 150 cm. The beam exit windows are made of 0.4 mm and

0.2 mm thick aluminum foils on the sides facing the HMS and SOS spectrometers,

respectively. The target ladder (see Fig. 12) is located inside the scattering chamber.

The solid targets are BeO, carbon, copper, iron targets (See Table 2). The targets

are mounted on the target ladder and can be exchanged in few minutes by the lifter

mechanism. The mechanism permits accurate, reproducible positioning of any of the

targets at beam height.

The cryotarget consists of three loops for circulating cryogenic liquids, see Fig. 13.
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Figure 12: Hall C target ladder.

This experiment and E06-009 [69] experiment ran simultaneously and used the

same target ladder shown in Fig. 13. The E06-009 used loop 1 filled with deuterium,

while the E05-017 experiment, which also ran during the same time period, used loop 1

filled with liquid hydrogen. The liquid hydrogen (LH2) was cooled down to 19.0 K and

held at a density of 0.0723 ± 0.0004 g/cm3. The liquid deuterium (LD2) was cooled

Target Purity Thickness (g/cm2) Radiation Length (%)

BeO 99.00% 0.2918 ± 0.00030 0.45

Carbon 99.95% 0.35525 ± 0.00030 1.06

Copper 99.95% 0.17775 ± 0.00015 1.81

Iron 99.95% 0.11870 ± 0.00014 1.00

Table 2: Thicknesses and radiation lengths of the solid targets.
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Figure 13: Hall C target ladder.

to a temperature of 22.0 K and a density of 0.1670 ± 0.001 g/cm3. The temperature

and pressure of the liquid targets were monitored by target control software which

was programmed to sound alarms when the temperature or pressure in the targets

changed beyond the predetermined limits.

The liquid target cells are made of 0.0127 cm aluminum. The 4 cm dummy target

(Al6061-T6) consists of two dummy endcaps to simulate an empty target for target

wall background measurements. The thicknesses and radiation lengths of the targets

in the cryotarget ladder are listed in Table 4.
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Foil Number Position Thickness (g/cm2) Radiation Length (%)

Foil 1 Upstream foil 0.2658 ± 0.0035 1.10

Foil 2 Downstream foil 0.2549 ± 0.0034 1.06

Table 3: Dummy target thickness and positions. The alloy is Al6061-T6.

Target Thickness (g/cm2) Radiation Length (%)

4 cm LD2 0.6570 ± 0.0039 0.56

Cell Walls (27Al) 0.0340 ± 0.0035 0.14

4 cm Dummy (27Al) 0.5210 ± 0.0017 2.11

Table 4: Thicknesses and radiation lengths of the targets in the cryotarget ladder.
Cell walls represent entrance and exit foils.

2.6 High Momentum Spectrometer

The High Momentum Spectrometer (HMS) was one of the two standard spectrometers

in Hall C. It was designed to have moderately large acceptance, good position and

angular resolution in the scattering plane, an extended target acceptance, and a large

angular range. During the current experiment the spectrometer was situated on the

right-hand side of the beam-line (with respect to incoming beam direction) and was

used to detect the scattered electron.

2.6.1 HMS Optics Design

The magnetic elements of the HMS consist of three superconducting quadrupoles and

a superconducting dipole, in a QQQD arrangement (Fig. 14). The dipole magnet is

a superconducting, cryostable magnet. Its basic parameters are an effective length of

5.26 m, a bend radius of 12.06 m and a gap width of 42 cm. It was designed to achieve

a 25o bending angle for 7.4 GeV/c momentum particles. It provides defocusing in

the vertical plane to achieve good momentum resolution. Quadrupole Q2 focuses in



55

Q1 Q2 Q3

Dipole

Detector Hut

Scattering
Chamber

27 m

Figure 14: Schematic lay-out of a HMS magnetic elements, showing the geometrical
configuration of the three quadrupole and the dipole magnets.

the horizontal plane, whereas Q1 and Q3 both provide vertical focusing. Horizontal

focusing of Q2 provides a large momentum bite, solid angle and extended target

acceptance. The HMS characteristics are given in Table 5.

2.7 HMS Detector Package

The detector package of the HMS consists of two drift chambers, DC1 and DC2, two

pairs of scintillator hodoscopes, S1 and S2, a gas C̆erenkov detector and a lead-glass

calorimeter. The detectors are mounted on frames that connect to the carriage that

supports the magnets. This design insures that the detector package and magnets stay

unmoved relative to each other. The detector package has the following functions:

triggering, tracking and particle identification. A schematic view of the HMS detector

package is shown in Fig. 15.
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Maximum central momentum 7.4 GeV/c

Momentum acceptance ±10%

Momentum resolution <0.1%

Solid angle 6.7 msr

Scattering angle acceptance ±40.0 mr

Out-of-plane angle acceptance ±80.0 mr

Extended target acceptance 10.0 cm

In plane angle resolution 0.4 mr

Out of plane angle resolution 0.9 mr

Useful target length 10.0 cm

Vertex Reconstruction Accuracy 2.0 mm

Table 5: HMS performance characteristics.

DC1 DC2
S1X S1Y S2X S2Y

Cerenkov
Calorimeter

HMS Vacuum pipe exit

^

Figure 15: Schematic side view of the HMS detector package.

2.7.1 Drift Chambers

A drift chamber is a particle tracking detector that measures the drift time of ioniza-

tion particles in a gas to calculate the hit coordinates of ionizing particle. Combined

with knowledge of the optical transfer properties of the spectrometer, the drift cham-

ber hit coordinates are used to reconstruct the particle trajectory, reaction vertex and

momentum at the target.

The drift chambers are spaced 81.2 cm apart, and each has an active area of about
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Figure 16: Drift chamber

113 cm (x) by 52 cm (y). They consist of six separate planes of sense wires (anodes)

of 25 µm diameter gold-plated tungsten spaced 1.0 cm apart in a gas mixture of argon

and ethane, and field wires (cathodes) of 150 µm gold-plated copper beryllium wires.

The planes are spaced 1.8 cm apart. Between each sense wire is a field wire which is

held at a negative potential (-1800 V to -2500 V). On both sides of the sense planes is

an additional plane of field wires, held at the same negative potential. The planes are

ordered X, Y, U, V, Y
′
, X

′
as seen by incoming particles. The X and X

′
planes provide

two measurements of position of the particles in the dispersive direction. The Y and

Y
′

planes offer two measurements of position in the transverse direction and the U

and V are rotated ±15◦ from the X (X
′
) planes to prevent the right-left ambiguity,

see Fig. 16.

When a charged particle passes through one of the chambers, it ionizes the gas



58

atoms and produces a trail of electrons and ions. Far from a sense wire, where

the electric field between wire and cathode is uniform and parallel, electrons drift

toward the wire with a constant velocity. As they get closer, the field has a stronger

radial nature, causing the electrons to accelerate and produce a secondary electron

avalanche. This avalanche generates a negative pulse on the wire. The signals from

each wire are amplified and discriminated on the cards attached directly to the drift

chambers and then sent to the TDCs (Time-to-Digital Converters) located in the

back of the detector hut. The measured drift time and known electron drift velocity

can then be used to calculate the perpendicular distance between wire and particle

track. A typical track generates signals in about five wires per plane. The position

resolution at the focal plane is approximately 280 µm per plane. More information

about the HMS drift chambers can be found in Ref. [70].

2.7.2 Hodoscopes

The HMS has 4 hodoscopes, which provide the trigger for detector read-out and

allows the identification of heavy particles through time-of-flight (TOF), though this

was not used in the present experiment. The hodoscopes are paired in two horizontal-

vertical X-Y sets (S1X, S1Y and S2X, S2Y). The sets are separated by 220 cm. Each

X hodoscope consists of 16 horizontally oriented scintillators (paddles), while the Y

hodoscopes consist of 10 vertically oriented scintillators. The paddles of the X and Y

hodoscopes are all 1 cm thick and 8 cm wide, but they have different lengths. The

X paddles are 75.5 cm long, and the Y paddles are 120.5 cm long. Each scintillator

paddle is wrapped in one layer of light-tight aluminum foil and two layers of Tedlar.

At both ends of each paddle are Photomultiplier Tubes (PMTs) attached to the

paddle through lucite light guides. The paddles are staggered in the beam direction
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with 0.5 cm overlap between the paddles to avoid gaps, see Fig. 17. When charged
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Figure 17: Hodoscope geometry.

particles pass through the paddles they excite the atoms of the scintillators. These

atoms emit light as they return to their ground state. The light is detected by PMTs

at the ends of the paddles. The light that is not emitted along the length of the

paddle is reflected internally through the scintillator and ultimately also detected by

the PMTs.

The signal pulses from the PMTs are sent to the counting house where they

run through the splitter, giving two signals with 1/3 and 2/3 of the amplitude of the

original input signal. The smaller signal goes to Analog-to-Digital Converters (ADCs)

that measure the integral of the signal. The other part of the signal is discriminated

and one set of outputs is sent to TDCs (for timing information). The other set of

outputs is sent into a logic module. The logic module first generates the logical OR of
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all the discriminated signals from the tubes on one side of a given plane, for example:

S1X+ ≡ (S1X1+ OR S1X2+ OR ... S1X16+). There are equivalent sets of signals for

the − side of each plane. Then, these sets of signals are combined into six outputs:

a) S1X ≡ (S1X+ AND S1X−) and analogously for S1Y, S2X, S2Y. These four

output logic signals indicate which of the hodoscope planes are active and make a

new logic signal in case at least three of them have fired which is called SCIN.

b) The X−Y pairs are further combined to form S1 ≡ (S1X OR S1Y), and S2 ≡

(S2X OR S2Y). These signals indicate whether the pairs are active and make a logic

signal called STOF.

These logical outputs are then sent to the main trigger logic and to the scalers to

be recorded. A more detailed description of the hodoscopes can be found in Ref. [71].

2.7.3 Gas Čerenkov Detector

The HMS gas C̆erenkov detector provides particle identification by operating as a

threshold detector. It consists of a large cylindrical tank (diameter of 150 cm, length

of 165 cm) situated in the middle of the detector stack between the hodoscope pairs

S1 and S2, see Fig. 15. A pair of front reflecting spherical mirrors mounted vertically

with 1 cm overlap at the rear of the detector is rotated over 15 degrees to focus

the light on a pair of PMTs, see Fig. 18. The detector is filled with C4F10 gas. The

C̆erenkov detector measures the light emitted when a charged particle travels through

the gas with a velocity above the speed of light in the gas. This is known as C̆erenkov

radiation. The light will be emitted with an angle cos(θ) = 1/nβ, where β is the

velocity of the particle relative to the speed of light and n is the index of refraction of

the material. If nβ < 1 no light will be emitted. The light is reflected from focusing

mirrors to PMTs, which generate a signal proportional to the number of C̆erenkov
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photons. The gas (and here the index of refraction) is chosen such that electrons at

the spectrometer momentum will emit C̆erenkov radiation and pions will not. The

refractive index of the C4F10 gas at 1 atm is n = 1.0006 and this gives a pion threshold

above 4 GeV/c and an electron threshold of about 15 MeV/c. The average measured

signal from an electron is about 10 photoelectrons, see Fig. 19. However, it is still

possible for a pion to be misidentified as an electron when it produces a knock-on

δ-electron that fires the C̆erenkov detector.

The signal from each PMT is sent to the counting house where each signal is split

in a fashion similar to the hodoscope signals. One pair of signals is sent to the ADC

and the other pair is summed and put through the discriminator to give signals for

the TDC and trigger logic. More information about the C̆erenkov detector can be

found in Ref. [71].
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2.7.4 Electromagnetic Calorimeter

The HMS has a lead-glass calorimeter which is used to discriminate between electrons

and pions. Fig. 20 depicts the calorimeter which consists of 52 TF1 type lead glass

blocks 10 cm × 10 cm × 70 cm, with a PMT on one end. The blocks are arranged

in four layers with 13 blocks per layer, giving a total thickness of the calorimeter

along the direction of particle motion of 16 radiation lengths. As shown in Fig. 15 the

calorimeter is rotated 5◦ with respect to the dispersive plane to prevent particles from

passing between the blocks. Electrons interacting with the lead glass radiate photons

in the calorimeter, which in turn produce electron-positron pairs (when the photons

are energetic enough). These pairs in turn also radiate photons and so a shower of

particles (e+, e−, γ) is produced in the calorimeter. The charged particles produce

C̆erenkov radiation which is detected by photomultiplier tubes. The produced signal
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is proportional to the total track length of the particles in the calorimeter which is in

turn proportional to the energy of the initial electron. Electrons (positrons) entering

the calorimeter deposit their entire energy, and thus the ratio of deposited energy

of electrons (positrons) in the calorimeter to the detected energy derived from the

particle bending in the spectrometer is unity, see Fig. 21.

Pions normally deposit about 300 MeV through ionization in the calorimeter so a

peak in the Ecalo/E
′

spectrum can be observed at 0.3 GeV/E ′. However, pions can

have a charge-exchange reaction and produce a neutral pion, which in turn decays

into two photons, the full energy of which will be deposited in the calorimeter. This

leads to a high-energy tail for pions, which can result in pion misidentification.

The signals from the calorimeter PMTs are sent to the counting house where they

are split 50/50. One half is sent to the ADC and the other half to the linear modules

to be summed. The sum in the first layer (PRSUM) and the sum of the entire

calorimeter (SHSUM) are discriminated to give three logic signals for the trigger.
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PRSUM is the sum of all signals from the first layer of the calorimeter. The SHSUM

signal, obtained by summing the signals from all lead-glass blocks, represents the

total energy deposited in the calorimeter. PRSUM are used to form the high (PRHI)

and low (PRLO) thresholds on the energy in the the first layer of calorimeter. SHLO

is a cut on the total energy in the calorimeter.

2.8 Data Acquisition System

The standard Hall C DAQ system consists of a variety of CAMAC, NIM, Fastbus

and VME electronics, as well as modules custom built by the JLab electronics group.

The data acquisition is handled by the CODA (CEBAF Online Data Acquisi-

tion) [72] software package running on a PC. Data for each run are written directly

to rotating memory and consists of three types of events: 1) detector information

handled by the ADCs and TDCs, 2) scaler information, and 3) information from the
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EPICS [73] database. The ADCs and TDCs are read-out for each event, while the

scalers are read every 2 seconds. The EPICS database contains information such as

magnet settings, beam position and target temperature and pressure. These quanti-

ties are read out every 30 seconds. More information about data acquisition can be

found in Ref. [72].

2.8.1 Triggers

Triggers generated by the PMT signals from the scintillator planes and from calorime-

ter blocks are sent to DAQ.

The physical information of interest is ultimately obtained also from raw data

(digital numbers) read out from hundreds of ADC and TDC channels.
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Figure 22: Schematic diagram of the HMS trigger logic.
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Charged particles passing through the spectrometer produce triggers in one or

more of the detectors described earlier. Certain combinations of these triggers are

used to form the pretrigger. An electron trigger (ELREAL) can be produced in two

ways:

1) The low − level electron trigger (ELLO) requires a C̆erenkov signal (C̆), plus at

least two out of three of the following conditions: a) at least one of the two scintillator

layers of each hodoscopes has fired (STOF ≡ S1 AND S2). b) at least three of the

four scintillator layers of both hodoscopes have fired (SCIN). c) There is a (PRLO)

signal from calorimeter.

2) A high − level electron trigger (ELHI) requires that all of the following signals

are present: a) The (SCIN) signal. b) The (PRHI) signal from the calorimeter. c)

The (SHLO) signal from the calorimeter. The high − level electron trigger (ELHI)

does not use the C̆erenkov signal.

The electron trigger (ELREAL) is (ELLO) OR (ELHI). The reason for using

two electron triggers (ELLO) and (ELHI) is to reduce the trigger inefficiency and

to provide the most efficient electron-hadron separation by the C̆erenkov and the

calorimeter detectors.

There is an additional pion trigger (PION) which requires the (SCIN) signal, and

no C̆erenkov signal (
¯̂
C). The (PION) signal is then combined with a prescaling circuit

to form (PIPRE), which ensures that a low-rate sample of pions is sent along to the

data acquisition system. Two copies of (ELREAL) are generated: one is fanned out

into four logic units with dead times set between 30 and 120 ns in order to allow a

measurement of the electronic dead time and another (ELREAL) OR (PIPRE) forms

the signal (PRETRIG), which is forwarded to the Trigger Supervisor (TS) [74].
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When a run is started first 1000 pedestal triggers are generated by (PED PRE-

TRIG) and the data acquisition system records the read-outs from the ADCs. Then

the data acquisition system begins to record physics events. When a physics event

is signaled by (PRETRIG), the data acquisition system records the read-outs of the

detectors ADCs and TDCs. The TS sets TS BUSY while the data acquisition system

records the read-outs. After the data acquisition system has completed recording

the event information, TS BUSY is set off to allow for the next physics event. Both

trigger and pretrigger signals are written into scalers providing information about the

computer dead time.
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Chapter 3

Data Analysis

The goal of data analysis is to perform and apply detector calibrations and extract

cross sections from experimental data. In this chapter the calibration of detec-

tors, along with background subtraction and cross section extraction methods are

described.

3.1 BCM Calibrations

The BCMs measure the integrated beam current in two second intervals, an example

is shown in Fig. 23. The Unser monitor is used to calibrate the BCMs since it has

very well measured and stable gain. Despite its stable gain, the Unser’s offset is very
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Figure 23: Unser and BCM frequency versus time.

unstable and can change depending on temperature and other physical conditions.
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This is the reason it is not used for an absolute beam current measurement. The

BCMs have very stable offsets but their gains can change over time and need to be

calibrated a few times during this experiment.

During a BCM calibration run the accelerator delivers beam to the hall in current

steps lasting 2 minutes, first increasing up to the current at which data are taken, then

decreasing, with equal time intervals of no beam between the steps. During the beam
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Figure 24: BCM calibration results for the entire period of the experiment. The time
interval between first and last measurement is two months. This shows that BCM
gains and offsets were very stable.

off intervals the zero offsets of the Unser monitor are measured by calculating the

average frequency of the Unser before beam was on and after beam was off (before

2 minutes interval and after it). This allows a very accurate determination of the

Unser monitor’s offset during the 2 minutes beam on interval. The beam current for
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each beam on period is calculated using the measured Unser offset and gain. Plotting

the BCMs average frequency, during the beam on period, versus the Unser current

and doing a linear fit one can extract the BCMs’ gains and offsets. These gains and

offsets are used in the replay engine to calculate the beam current.
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Figure 25: BCM calibration residuals.

In the E04-001 experiment the beam current for the iron target was limited to

maximum of 40 µA, while for carbon, aluminum and copper up to 80 µA. For produc-

tion runs the beam current was always higher than 35 µA to minimize the uncertainty

in the charge.

The systematic error from the calibration procedure, due to noise of the Unser

monitor signal and uncertainty of the gain of the power meter signal used to mea-

sure the beam current signal from the BCM, yields on overall absolute systematic

uncertainty on the current measurement of 0.3 µA. This was estimated by analyzing

carbon runs taken with same kinematics but with beam currents ranging from 10 µA

to 100 µA. All runs were corrected by a factor 1.0/(1 + 0.3/I) to take account this
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offset.

3.2 Detector Calibrations

For all previous Hall C experiments, the software package HALL C Engine has been

used for data analysis. It is a code based on GNU FORTRAN 77, which utilizes

many of the data manipulation and display tools that are part of the widely-used

CERNLIB package. It involves techniques for the HMS data analysis which, as a

result of copious use in recent years, are stable and well-tested. The principal element

is drift chamber (DC) tracking and the closely related magnetic reconstruction of the

scattered electron momentum, direction and its reaction vertex at the target. In this

chapter calibration of the DC, the C̆erenkov, and the Calorimeter will be discussed.

3.2.1 Drift Chamber Calibration

Drift chambers provide the tracking information, coordinates and angles, for particles

entering the HMS. The time difference between the fast START signal from the

hodoscope counter and the STOP signal from the drift chamber is used to calculate

the track position. In order to avoid negative drift times the overall offset between

the times measured by the drift chamber and the times measured by the hodoscope

is removed by doing hodoscope timing calibration. The time taken for electrons

produced by ionization along a electron track to reach the anode wire is measured

by TDC’s and converted into a perpendicular distance from the wire. Since the hit

time in a particular TDC depends on specific cable lengths and signal processing

times, that may differ from channel to channel, a reference time (t◦) is found for each

wire. This is used to extract the drift time from the actual TDC time. In order to
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Figure 26: Drift time and distance distributions for the HMS drift chamber plane
X1. These distributions are the sum of all production runs.

determine how far the track was from the wire we generated a time-to-distance map

using the following procedure. About 200000 events are analyzed to obtain the drift

time spectrum. Assuming that hits are distributed evenly around the sense wire one

can obtain the drift time by the following formula:

D(t) = Do

∫ t

tmin

F (τ)dτ∫ tmax

tmin

F (τ)dτ

(3.61)

where D is the calculated distance from the wire, Do is the drift cell size (5 mm), T

is the TDC time, tmin, tmax are time limits corresponding START to STOP signals
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(250 ns), F (t) is the measured drift time distribution.

At high rates there are many accidental events which can force the tracking algo-

rithm to fail and therefore introduce a tracking inefficiency. In order to reduce the

number of these accidental events a narrow HMS drift chamber TDC time window

from 2400 to 2900 channels (before it was 1800-3300 channels, 1 channel 0.5 ns) was

used.

3.2.2 C̆erenkov Calibration

The C̆erenkov calibration is accomplished by finding the minimum ADC signal cor-

responding to the production of one photoelectron in the PMT. To see the one pho-
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Figure 27: ADC spectrum of the C̆erenkov detector, PMT1 and PMT2.

toelectron peak one should select events that originate from less populated regions of

the HMS acceptance to allow a minimal amount of light into the PMT. By doing so,

it is possible to see the one, the two and even the three photoelectron peaks. The

results of the calibration are shown in Fig. 27 where three different peaks are clearly



74

visible. For PMT1 the one photoelectron peak is located at ADC channel 150, the

two at 300 and a third peak three at 448 indicating that the calibration is done cor-

rectly (the pedestal peak is centered at the zero ADC channel), since two and three

photoelectron peaks are multiples of the one photoelectron peak. The same is true

for PMT2. The ADC spectrum shown in Fig. 27 is the sum of all production runs.

During the entire experiment the PMT pedestals had widths about 30−40 channels

and were very stable. The calibrated signals from two PMTs are summed to get the

total number of photoelectrons produced for each event.

As described in Section 2.7.3 the C̆erenkov detector has two mirrors. Due to

engineering difficulties there is a gap at the region where the mirrors meet. The gap

causes photon detection inefficiency around the central part of the δp acceptance of

the HMS. In order to estimate the size of the inefficiency and correct the cross sections
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Figure 28: Inefficiency of the central part of the C̆erenkov due to a gap between
the mirrors. Inefficiency is parametrized in δp and applied to all cross sections on
bin-by-bin basis. All production runs are used to calculate the inefficiency.
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the following procedure is done: the ELHI (see Section 3.4.7) trigger is required to

fire in addition to all cross section cuts, the experimental yield is calculated with a

C̆erenkov cut with the number of photoelectrons greater than 0 and greater than 2

(see Sec. 3.4.2 for C̆erenkov cuts) and the ratio of the yields is plotted versus δp. The

ratio is scaled by a constant to remove the effect of the C̆erenkov cut 2 on pions (this

exposes the inefficiency only due to the gap). As it can be seen from the Fig. 28 the

C̆erenkov cut 2 causes up to 2% inefficiency at the central part of the δp spectrum.

The ratio is parametrized in δp and is applied to the cross sections (for |δp| < 2%

range) on bin-by-bin basis using the following formula

σ(W 2
i , θ)corr = σ(W 2

i , θ)
/∫ W 2

i max
(δp)

W 2
i min

(δp)

f(δp)dδp. (3.62)

It is important to mention that except for the inefficiency caused by the gap no

position dependent ( δp ) inefficiency is found. The point-to-point uncertainty (fit

residuals) due to this parametrization is estimated to be 0.15%.

3.2.3 Calorimeter Calibration

Shower detector counters measure the energy deposited by the incoming particle.

While passing through the lead glass of the shower counter, photons and electrons

produce secondary photons and electrons, thus leading to an electromagnetic shower.

The secondary electrons emit Čerenkov light, which after being reflected from the

inner surface of the shower blocks, is collected on the cathodes of the photomultiplier

tubes(PMT), mounted at the end of each block. The registered light is linearly pro-

portional to the energy deposited by the incoming particle. Light flashes on the PMT

cathode produce electrical signals, which are sent to ADC’s and are stored in the
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77

data stream for further analysis. The purpose of the shower cluster reconstruction in

a shower detector is to calculate energy and in some cases the position of the particle.

For this, at first shower cluster is identified. The cluster in a shower detector is deter-

mined as a group of adjacent shower counters, where an electromagnetic shower has

developed, i.e. an energy deposition was detected. The block that has the maximum

energy deposition is called the central counter of the cluster.

The parameters of the shower — the energy and the coordinates — are calculated.

The energy E is calculated as a sum of energy deposition in all of counters included

into the cluster by the formula

E =
∑
i∈M

Ei , (3.63)

where:

i — number of shower counter, included into the cluster;

M — set of counters numbers, included into the cluster;

Ei — energy deposition in the i-th counter;

For the shower parameters reconstruction, the shower counters gain calibration

is required. The first step involves using the HMS electron energy Ee.

The purpose of calibration is to define a coefficient for transformation of the ADC

amplitude to the energy deposition for every shower counter. i.e., define coefficients

Ci such that,

Ei = Ci · (Ai − Pi) , (3.64)
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where:

Ai — ADC amplitude;

Pi — pedestal of the amplitude;

Ci — calibration coefficient;

Ei — energy deposition in the i-th counter.

The calibration coefficients Ci are calculated by minimization of the functional

χ2 =
N∑
n=1

[ ∑
i∈Mn

Ci · (Ani − Pi)− En
e

]2

. (3.65)

Here:

n = 1÷N — Number of event;

i — Number of blocks, included in the cluster;

Mn — Set of counters numbers in the cluster;

Ani — Amplitude in the i-th counter;

Pi — Pedestal of the i-th channel;

En
e — Known energy of a particle;

Ci — Shower counters calibration coefficients to be fitted.

After obtaining the calibration coefficients, the energy deposition E is calculated

by the formula (Eq. 3.63).
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3.3 Target Coordinate Reconstruction

In the transport coordinate system the trajectory of the particle at the focal plane,

at the target and through the HMS magnetic elements is described by a vector (t),

which expresses the track relative to the central reference trajectory. This vector is

characterized by five components:

~t =



x

x′

y

y′

δ


(3.66)

where:

• x is the dispersive (vertical) displacement from the central trajectory expressed

in meters.

• x′ is the angle the trajectory makes in the dispersive (vertical) plane relative to

the central trajectory (dx/dz), expressed in radians.

• y is the displacement in the non-dispersive (horizontal) plane.

• y′ is the angle the trajectory makes in the non-dispersive (horizontal) plane

relative to the central trajectory (dy/dz), expressed in radians.

• δ is the fractional deviation of the momentum from the central value (p− p◦)/p◦,

expressed in percent.
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In a first-order approximation, a transport matrix can be defined to relate the mea-

sured focal plane coordinates to their counterparts at the target:



δ

x′

y

y′


tar

=



< δ|x > < δ|x′ > 0 0

< x′|x > < x′|x′ > 0 0

0 0 < y|y > < y|y′ >

0 0 < y′|y > < y′y′ >





x

x′

y

y′


fp

(3.67)

This matrix involves only four unknown parameters since xtar is known from the

BPM data. In practice, the expansion of the focal plane coordinates is performed up

to the fifth order. The reconstruction is performed with this formula:

xitar =
∑N

j,k,l,m
M i

jklm(xfp)
j(yfp)

k(x′fp)
l(y′fp)

m for (1 ≤ j + k + l +m ≤ N) (3.68)

where M i
jklm denote the elements of the reconstruction matrix.
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3.4 Extraction of the Differential Cross Section

The inclusive electron-nucleus cross section is extracted using the following formula:

d2σ

dΩdW 2
=

PS ×Nevents

Acc×∆Ω×∆W 2 ×Nin × Eff × LiveT ime×Ntg

(3.69)

where

• PS is the prescale factor.

• Nevents is the number of scattered electron observed in solid angle dΩ and dW2

range.

• Acc is the acceptance of the dΩ and dW2 bin.

• ∆W2 is the width of W2 bin.

• ∆Ω is the solid angle.

• Nin = Charge/Qelectron is the number of incident electrons.

• Eff is the product of all efficiencies, trigger, particle identification, and tracking,

• LiveTime is the product of electronic and computer live times.

• Ntg=ρNAd/A is the number of scattering centers per cm2.

3.4.1 Acceptance Cuts

The Hall C event reconstruction program reconstructs track parameters at the focal

plane and using an optic model of HMS finds the target parameters using the Eq. 3.68.
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At the focal plane the track parameters are the x and y coordinates, and slopes of the

track are x′fp and x′fp. These parameters are defined in Section 3.3. Cuts are applied

to the reconstructed target quantities in order to eliminate events that are outside

of the spectrometer acceptance but end up in the detectors after multiple scattering

in the magnets or shielding. The acceptance cuts are given in the Table 6. The

HMS acceptance cuts

|x′tar| < 0.08 rad

|y′tar| < 0.04 rad

|δ| < 8%

Table 6: Cuts on HMS reconstructed tracks.

angle cuts are applied to eliminate events coming from outside the HMS acceptance.

These events are the result of multiple scattering in HMS magnets and shielding

material. The angle cuts are selected to be large enough to allow most events. The

HMS momentum cut is applied to limit the HMS momentum acceptance since the

reconstruction matrix elements could provide reliable tracking reconstruction only

within these limits.

For the HMS, the x′tar and y′tar cuts typically rejected less than 0.3% of the total

tracked events, and never more than 1.5%. For those rejected events, most come from

events that are outside of the spectrometer acceptance but end up in the detectors

after multiple scattering. The loss of these events is compensated by including mul-

tiple scattering effects in the acceptance calculation. Also, these events are mostly

lost from the very edge of the θ bins. In the cross section calculation this edge bin is

eliminated. The percentage of events lost due to not using the edge bins depends on

kinematic setting and is in 0.1-0.5% range.
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3.4.2 Particle Identification Cuts

As in all experiments there are events coming from reactions other then the one the

experiment wants to study. These events are regarded as a background. Different type
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Figure 30: HMS calorimeter track energy hsshtrk/E′ vs number of C̆erenkov photo-
electrons. The magenta line shows the C̆erenkov cut, the red line shows the Calorime-
ter cut.

of detectors are constructed to decrease the number of background events in order to

achieve the experiment’s specific precision goals. For this experiment there are two

detectors used for particle identification, a threshold C̆erenkov detector described in

Section 2.7.3, and an electromagnetic lead-glass calorimeter described in Section 2.7.4.

The main background in this experiment is from negative pions produced by charge

exchange reactions. The ratio of pions to electrons varied from 0.1 to 30 for all

runs. In this experiment the C̆erenkov cut required that number of photoelectrons be

bigger than 2 (hcer npe > 2), and the ratio of the Calorimeter track energy divided
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to particle energy (determined from HMS) be greater than 0.7 (hsshtrk/hse > 0.7).

Fig. 30 gives event distribution versus the number of photoelectrons on one axis and

the track energy against the other. The pions and electrons are clearly identified.

C̆erenkov Cut Efficiency: Fig. 19 shows a HMS C̆erenkov spectrum. The mean

HMS signal is around 10 photoelectrons and most of the pions have zero photoelec-

trons. The majority of the pions that have a signal with more than 2 photoelec-

trons are pions that produce delta electrons at the front window or in the gas of the

C̆erenkov. These delta electrons emit C̆erenkov light and the pion is misidentified as

electron. In order to reduce the number of pions, a cut on C̆erenkov signal is applied.

The cut requires that number of photoelectrons to be greater than 2. This number

is chosen to eliminate most of the pions and at the same time allows the majority

of the electrons to pass. Not all electrons can be eliminated due to this cut so it is

necessary to estimate how many. It is possible to estimate the number of electrons

lost to this cut by looking at the total energy distribution in the calorimeter when

applying all cross section cuts except the C̆erenkov cut. This C̆erenkov cut requires

that number of photoelectrons to be in the range 0 to 2, where 0 is excluded to

reduce number of pions in the energy distribution. In the top plot of Fig. 31 the

ratio (hcal et/hsshtrk) of total Calorimeter energy to HMS momentum is shown af-

ter applying the aforementioned cut. The blue shaded area is the pion background

estimated by a polynomial function. The parameters of the polynomial are obtained

by fitting the distribution of hcal et/hsshtrk ratio with a C̆erenkov photoelectron cut

equal to zero. The red hatched area is the estimated number of electrons that were

cut by the requirement that the number of photoelectrons was greater than 2 and

are the source of the C̆erenkov inefficiency. The number of these events divided by
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Figure 31: First plot: HMS calorimeter total energy hcal et/E′ distribution when
number of photoelectrons are higher than 0 but less than 2. Second plot: The
C̆erenkov cut efficiency as a function of scattered energy.

the total number of electrons is the inefficiency of the C̆erenkov cut and is shown in

the bottom plot of Fig. 32. The C̆erenkov cut efficiency is 99.7% and drops a little

at the lowest scattered energy (most likely caused by high pion/electron ratio). The

electron cut efficiency is parametrized in E′ and used to correct the cross section. The

systematic error of the C̆erenkov cut is estimated to be about 0.1%.

Calorimeter Cut Efficiency: The C̆erenkov cut alone is not enough to achieve the

necessary pion rejection power at low energies ( 0.4 − 1.0 GeV). An additional cut,

hsshtrk/hse > 0.7, on the Calorimeter energy is applied to reduce the number of
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Figure 32: HMS central momentum is 0.71 GeV. Top plot: HMS calorimeter track
energy Etrack/E

′ (hsshtrk/hse) distribution without C̆erenkov cut (the blue line) and
with C̆erenkov cut > 2 (the red line). Bottom plot: The Etrack/E

′ distribution after
C̆erenkov cut > 2 and Etrack/E

′ > 0.7 cut (the red hatched area). The solid blue
area is the pion contamination.

pions that pass the C̆erenkov cut. The distribution of hsshtrk/hse, where hsshtrk is

the track energy in the calorimeter and hse is the energy of the particle measured in

the HMS, has electrons peaked at 1 and pions peaked at 0.3/Etrack, see the bottom

plot of Fig. 32. The hsshtrk/hse > 0.7 cut will remove most of the pions, but it

will also remove some good electrons, which for some reason have less energy in the

calorimeter than expected. It will cause an inefficiency (Calorimeter cut inefficiency)
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and needs to be estimated. There is another source of inefficiency associated with the

calorimeter cut called Wrong Tracking Efficiency (WTE). The WTE is not specific

to calorimeters, but is rather a result of imperfect tracking algorithm. The WTE is

absorbed into the calorimeter inefficiency since it is the result of the calorimeter cut.

At the lowest scattered electron energy as this experiment, 0.44 GeV, the

Calorimeter resolution is the worst and is equal to 7% (see Fig. 29). Even in this

case the hsshtrk/hse > 0.7 cut is 3σ away from the peak and is more than 99.9%

efficient. However, contribution from calibration errors, light collection inefficiency,

and pedestal drift can leave some electrons below the the 3σ threshold and will be

cut by the hsshtrk/hse > 0.7 cut.

To estimate the number of this electrons the following procedure is followed:

• First, it is necessary to find the lowest value of hsshtrk/hse for good electrons.

A few elastic runs with several E′ are analyzed to estimate this value. It was

found that small number of electrons, after a strict cut ( > 10 ) on the C̆erenkov,

can have hsshtrk/hse as low as 0.3.

• Second, the cut efficiency is calculated with this formula

εcutcal =
N events(Etotal

calo /E
′ > 0.7, hcal e1/hse > 0.2, Cerenkov > 10)

N events(Etotal
calo /E

′ > 0.3), hcal e1/hse > 0.2, Cerenkov > 10)

where hcal e1 is the total energy deposited in the first layer of the calorimeter.

Since pions are less likely to deposit significant energy in the first layer (the

first layer acts as preshower) this cut further reduces their number. In addition

to the cuts in the above equation, acceptance cuts are also applied both in

numerator and denominator.
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The procedure described above will count some pions as electrons even with strict

cuts on the C̆erenkov and on the first layer of the calorimeter. This means that it will

underestimate the calorimeter cut efficiency. For each momentum setting there are a

few runs with different angles, and therefore with different π/e ratio. If there are no

pions after Etotal
calo /E

′ > 0.3 cut one would expect that the Calorimeter cut efficiency

to be the same. In order to estimate the systematic error these pions introduce, the

efficiencies from runs with the same momentum but different angles are averaged and

the average is used as the cut efficiency for that momentum. The error bar is the

standard deviation from the average.

There are some good events (having passed the acceptance and the

C̆erenkov > 2 cuts) for which a cluster in the calorimeter is not found. These events

can be seen in the spectrum of hsshtrk/hse around zero, as seen in the bottom plot

of Fig. 32. For these events the tracking algorithm was unable to predict the correct

position of the track on the front face of the Calorimeter, that is a wrong track energy

reconstruction. However, the value of the total deposited energy in the calorimeter

divided by the energy of the detected particle is still around 1 (Etotal
calo /E

′ ≈ 1). The

loss of these good events is compensated by calculating the efficiency due to the wrong

tracking, denoted as εwrong. The εwrong is calculated using this formula

εwrongcal =
N events(Etrack

calo /E
′ > 0.7, Cerenkov > 10, ntracks = 1)

N events(Etotal
calo /E

′ > 0.7, Cerenkov > 10, ntracks = 1)
.

The requirement of having one track is essential to ensure that there is only one cluster

in the calorimeter. At high counting rates it is possible to have two clusters produced

by two high energy electrons. These two electrons will be counted as one and the lost

electron will contribute as electronic dead time. In addition to the cuts in the above
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Figure 33: Upper plot: Calorimeter efficiency versus E′. Second and third plots:
Residuals of the fit when E′ <1 GeV (left) and E′ >1 GeV (right).

equation, acceptance cuts are also applied both in numerator and denominator.

The total Calorimeter efficiency is the product of WTE and Calorimeter cut ef-

ficiency and is shown in Fig. 33. The top plot is the Calorimeter total efficiency vs

E′. It is parametrized as a function of E′ and used in the cross section analysis. The

second and third plots are the residuals of the parametrization for E′ < 1 GeV and

E′ > 1 GeV. The systematic uncertainty is estimated as the σ of the residuals (left

and right plots) and is used in cross section analysis. Systematic uncertainty is about

0.13% for E′ < 1 GeV and 0.03% for E′ > 1 GeV. The difference is the result of higher
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π/e ratio at low energies.

3.4.3 Background from the target walls

Backgrounds are unfortunate part of all nuclear physics experiments. Depending on

the goals of the experiment they must be taken into account by subtracting back-

ground events or by estimating them and assigning a systematic uncertainty to the

final measurement. In this experiment all backgrounds that can contribute more than

half a percent are estimated and subtracted to obtain the final result.

Y target (cm)
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300 Total yield

Dummy yield
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Figure 34: Normalized yield distributions for deuterium target. The solid red line is
the total normalized yield, the blue solid area is the contribution of estimated events
(from dummy target) produced by aluminum walls of the liquid deuterium target,
the cyan shaded area is the corrected deuterium yield.

The cryotarget liquid targets have aluminum walls which can be source of back-

ground induced by scattering on nucleons of the aluminum nuclei. In order to deter-

mine the magnitude of this background, data on the aluminum dummy target have

been taken at exactly the same kinematic settings as the deuterium data. The size

of this background is estimated by the following formula
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Ycorrected = YCryot. − YAlum.
TWalls

TAlum.

Rext
Alum.

Rext
Walls

, (3.70)

where, Y are the yields for the cryo and aluminum dummy targets, T is the thickness

of the aluminum walls in the cryotarget and aluminum dummy target, and R is the

external radiative correction for the aluminum dummy target or the aluminum walls

in the cryotarget. Yield for one of the deuteron runs without aluminum background

subtraction is shown in the Fig. 34. In the same figure the yield for the target wall

background and the corrected deuterium yield are shown.

The size of the background from the aluminum target walls is generally about

10%. The background has been calculated for each run and the subtraction has been

done on a bin-by-bin basis in (W 2, θ).

3.4.4 Charge Symmetric Background

In this experiment inclusive electrons are scattered from nuclear targets. The prob-

ability of production of γ and πo particles in the target is comparable to the cross

section of inclusive electron scattering cross section in the kinematic range of this

experiment.

The πo decays predominantly to two photons which produce electron-positron

pairs when passing through the target or any material between target and the drift

chambers. In the beam energy range of the current experiment bremsstrahlung of γ

particles (virtual and real) is the dominant electron energy loss mechanism. The γ

particles will produce electron-positron pairs in the field of a nucleon (Bethe-Heitler

process). The resulting electrons produced through the reaction mechanisms de-
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scribed above is kinematically indistinguishable from inclusive electrons and passes

all particle identification cuts. These electrons are a background and need to be

subtracted from real inclusive electrons scattered from the target. Since the normal

configuration of the experiment is unable to remove these electrons, another approach

is used. From the production mechanism of background electrons it can be seen that

there should be equal number of positrons and electrons (that is why this is called

charge symmetric background (CSB)). Thus, the polarity of the HMS spectrometer

is reversed and positron data are taken at the spectrometer settings where the charge

symmetric background is large. This background is significant for larger scattering

angles and small final electron energies of the electrons.
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Figure 35: Cross section of Charge Symmetric Background for the carbon target.

The background contribution from kaon decay is negligible and is not taken into

account, for more details see Ref. [75]. Runs with reversed HMS polarity were taken

where the CSB was considered to have significant contribution. The CSB cross section
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Figure 36: First plot: Ratio of CSB cross section to raw electron cross section versus
E′ for all carbon runs. Second plot: The residuals of CSB fit for θ=25,35,45 degrees
(left) and θ=60,75 degrees (right).

is calculated for all these runs and then extrapolated by the following function:

F (E ′) = eC
(
eS(Ebeam−E′) − 1

)
,

where E′ is the electron energy. C(θ) and S(θ) are free parameters determined from

fitting the cross sections for each beam energy and angle as shown in Fig. 35. The

form of the function is chosen to go to zero at E′ equal to the beam energy and

have smallest possible number of parameters. After fitting the CSB cross sections at
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each energy and angle, the C(θ) and S(θ) parameters are interpolated in theta by a

polynomial function of second degree. The parameters of the polynomials are stored

in a lookup table and are used in the cross section analysis. The CSB is subtracted

from the total electron cross section for each bin (θ,W 2).

The CSB reaches 60% at the smallest values of E ′ = 0.44 GeV and the largest

angles, θ =76o and about 50% for θ =75o, as can be seen in the top plot of Fig. 35.

The point to point uncertainty has been estimated as the deviation of the measured

cross section from the parametrization and is equal to 0.1% for angles less than 45o

and 0.4% for angles 60o and 75o. See the bottom plots of Fig. 36.

3.4.5 Pion Contamination

The C̆erenkov and the calorimeter cuts can’t fully remove all pions. Most of the pions

do not give a signal in the C̆erenkov detector, but some pions can produce knock-on

electrons of high enough energy ( more than 20 MeV) to emit C̆erenkov light. These

pions will pass the C̆erenkov cut. In the calorimeter, pions can be registered due to

ionization losses. This is visible as a wide peak around 0.3/E ′(GeV) in the normalized

energy spectrum of the calorimeter. Also pions can undergo charge-exchange reactions

and produce a neutral pion which decays into two photons. These photons will deposit

their full energy in the calorimeter which leads to a high energy tail in the normalized

energy spectrum of the calorimeter and can go beyond Ecal/E
′ = 0.7 ( the calorimeter

cut). As a result both C̆erenkov and calorimeter cuts will fail to reject some of

the pions and they will be accepted as electrons, resulting in pion contamination

in the electron sample. In the kinematic range of the current experiment the pion

contamination is estimated to be up to 3%. Investigation showed no rate dependence

of pion contamination.



95

3.4.6 Electronic and Computer Dead Times

In this experiment electronic dead time was low (less than 3% ) since the highest

counting rate is less than 500 kHz. Computer dead time reached up to 60% for very

few runs and is generally lower than 30%; see Fig. 37.
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Figure 37: First plot: Computer live time as a function of rate. Second plot: Elec-
tronic live time as a function of rate.

Electronic Deadtime: Electronic dead time (EDT) is caused when a trigger is

missed because the hardware is busy when an event that should generate a trigger

comes in. Detector dead time occurs when a detector is unable to respond to an event

because it is still responding to a previous event.

For an average event rate R the probability of finding n counts in a time interval

τ is given by the Poisson distribution,
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P (n) =
(Rt)ne−Rt

n!
. (3.71)

The live time is the probability of no events occurring in the interval τ is P (0) = e−Rτ .

For small Rτ this can be approximated by P (0) ≈ 1 − Rτ . An event will be missed

when it arrives within a time τ of an event accepted by the gate, where τ is the gate

width of the logic signal. Therefore, the fraction of the measured events is equal to

the probability that the time between events will be greater than τ ,

Nmeasured

Ntotal

≈ 1−Rτ . (3.72)

In order to determine Ntotal, scalers with four different gate widths (t=50, 100, 150,

200 ns) have been used and the number of events recorded in each of them have been

measured (N50, N100, N150, N200). A linear extrapolation back to zero gate width

gives Ntotal. In Hall-C ENGINE the electronic dead time is calculated using only
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Figure 38: Rates with different gate widths for run 63915.
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two pretriggers, PRE100 and PRE150. The following formula is used to get the final

electronic dead time (EDT) for each run.

EDT ≈ (PRE100− PRE150)

PRE100

∆τ

50
. (3.73)

where τ is the real electron trigger gate width (60 ns).

All runs are corrected on a run by run basis, and no systematic uncertainty is

assigned to the electronic dead time. For more information about electronic dead

time see Ref. [71].

Computer Deadtime: The computer dead time occurs as a result of the data

acquisition computers being busy processing an event and not being available to

process new events. In that case a new event is lost. Events recorded by the electronics

have been logged as pretriggers. The pretriggers that have been processed successfully

by the trigger supervisor are recorded as triggers. The ratio of triggers to pretriggers

gives the computer live time (see Fig. 37),

L =
Ntrigger

Npretrigger

.

The computer live time is calculated for each run and applied on a run-by-run basis.

The systematic uncertainty for the computer live time has been studied by compar-

ing experimental yields at the same spectrometer kinematic setting but varying the

prescale factors and therefore, computer live times [75]. These studies show that the

yields agree within 0.2%.
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3.4.7 Trigger Efficiency

Triggers are used to reduce the rate of useful events into a range manageable by

the data acquisition equipment. Triggers also provide timing signals to the various

detector parts.

Some events can be lost due to inefficiencies of the detectors which are used to

form different triggers of the HMS spectrometer. The schematics of the single arm

trigger logic is shown in Fig. 22. It can be seen that the two electron triggers (low -

level and high - level) are strongly correlated. For example, if the (SCIN) signal (at

least three of the four scintillator layers of both hodoscopes have fired) is present for

an event, there must also be a (STOF) signal (which requires one front panel and

one back panel). If (PRHI) is present then there must also be a (PRLO) signal (high

(PRHI) and low (PRLO) threshold on the energy in the first layer of the calorimeter).

Thus, assuming that the C̆erenkov signal (C̆) is always present, the efficiency for the

low-level electron trigger can be calculated as εPRLO × εSTOF . The small inefficiency

of the C̆erenkov is covered by the ELHI trigger which does not require the C̆erenkov

signal. If the calorimeter has an inefficiency, an electron trigger still could be produced

if there is a (SCIN) signal. Accordingly the electron trigger efficiency for the HMS

can be calculated (estimated) by the following formula,

εtrg = εPRLO × εSTOF + (1− εPRLO)× ε3/4 , (3.74)

where ε3/4 is defined in Eq. 3.75.

The scintillator 3/4 efficiency (ε3/4) has been calculated by summing over all pos-

sible combination that would satisfy the 3/4 trigger



99

E’ (GeV)
0 1 2 3 4

T
rig

ge
r 

E
ffi

ci
en

cy

0.99

0.995

1

1.005

1.01
 / ndf 2χ  430.6 / 440

p0        3.668e+04± 3.695e+06 

p1        0.01649± 0.1869 

p2        9.918e+07± 8.405e+09 

 / ndf 2χ  430.6 / 440

p0        3.668e+04± 3.695e+06 

p1        0.01649± 0.1869 

p2        9.918e+07± 8.405e+09 

Trigger efficiency residuals(%)
-0.1 -0.05 0 0.05 0.1

0

50

100
 / ndf 2χ  43.61 / 8

Constant  5.86± 86.21 

Mean      0.0003811± 0.0006018 

Sigma     0.000341± 0.007302 

Figure 39: HMS electron trigger efficiency as a function of the scattered electron
energy.

ε3/4 =
∏
i=1,4

εi +
∑
j=1,4

(1− εj)
∏
i 6=j

εi , (3.75)

where i, j are the plane numbers and ε is the corresponding efficiency for each plane.

The average scintillator 3/4 efficiency (ε3/4) is about 0.983.

The (PRLO) efficiency (εPRLO) has been calculated as the ratio of the events that

have a (PRLO) signal and a signal from the C̆erenkov over the events that have a
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signal from the C̆erenkov,

εPRLO =
PRLO & C̆ER > 0.5

C̆ER > 0.5
. (3.76)

The average (PRLO) efficiency is about 0.98.

The (STOF) efficiency (εSTOF ) has been calculated by using the efficiency of each

scintillator (ε1, ε2, ε3, ε4,) by the following formula

εSTOF =
(

1− (1− ε1) ∗ (1− ε2)
)
×
(

1− (1− ε3) ∗ (1− ε4)
)
. (3.77)

The average (STOF) efficiency is about 0.999.

Finally, the total electron trigger efficiency for the HMS is calculated by Eq. 3.74

and the result is shown in Fig. 39. The trigger efficiency is always higher than

0.999. The trigger efficiency has been parametrized as a function of the scattered

electron energy and during the data analysis this parametrization has been used

on a run-by-run basis. The systematic uncertainty is estimated as the spread of

the measured trigger efficiency from the parametrization and is equal to 0.007%. A

detailed description of trigger efficiency calculation can be found in Ref. [76].

3.4.8 Tracking Efficiency

Sometimes track reconstruction can fail even when there is a legitimate track passing

through the detector system. These lost events should be taken into account during

cross section calculations. Lost tracks happen when the tracking algorithm fails to

reconstruct a track. There are reasons for this: first the ability of hardware to handle

high rates and work effectively, second, the prohibitively high computer time needed
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Figure 40: Illustration of the fiducial areas on the scintillator hodoscopes used for
determination of the tracking efficiency.

to reconstruct an event when there are multiple hits in drift chambers caused by

background, and third, at high rates it is possible to have two legitimate tracks and

the tracking algorithm is not able to reconstruct either of these events. In order to

minimize the track reconstruction time the Drift Chamber TDC window is chosen

to be 250 ns, it is required that each chamber have no more than 25 hits, and the

maximum number of focal plane tracks should be less than 10. In order to calculate

the tracking efficiency, only the central part of the HMS acceptance is chosen (a

fiducial region). The fiducial area consists of paddles 4-13 in the X planes and 4-7 in

the Y planes, as shown in Fig. 40. This defines the fiducial area, and guarantees that

only one particle passed through both drift chambers within the central area of the

spectrometer acceptance and should have been tracked.

In order to calculate the tracking efficiency a clean sample of electrons is selected

using electron identification cuts. The tracking efficiency is calculated as the number
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Figure 41: Tracking efficiency as a function of the scintillator (3/4) rate.

of events for which a track has been found, divided by the number of total events

passing the electron identification cuts as,

ε(tracking) =
Trigger & PID & Track

Trigger & PID
, (3.78)

where Trigger indicates that there is a trigger, Track is that at least one track is found

and PID represents the particle identification cut,

PID = hcer npe > 2.0 & hcal et/hpcentral > 0.7.
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The tracking efficiency calculated for each run as a function of the scintillator (3/4)

rate is shown in Fig. 41. The tracking efficiency has been parametrized as a function

of the scintillator (3/4) rate and during the data analysis this parametrization has

been used on a run-by-run basis. The systematic uncertainty is estimated as the

spread of the measured tracking efficiency from the parametrization and is equal to

0.15%. For a detailed description of tracking see Ref. [76].

3.4.9 Acceptance Calculation

Knowledge of the HMS acceptance is one of the dominant sources of uncertainties in

determining the cross section. For the HMS the acceptance is normally defined by a

collimator and subsequent magnet apertures. As the magnet apertures partially define

the acceptance, the magnetic model must be known in order to find the acceptance

function.

For a given angle and momentum the HMS can detect particles which have angles

and momentum around the given values. The HMS acceptance is a function of the

three target coordinates X, Y , Z and three spectrometer coordinates δ, X ′, Y ′. For

thin targets the cross section is independent of X, Y , Z and therefore the acceptance

is a function of only δ, X ′, Y ′. Spectrometer angles X ′, Y ′, defined in Section 3.3,

can be related to the polar angle θ by the following formula

θ = arccos(cos(X ′) cos(θHMS − Y ′)) (3.79)

where θHMS is the central angle of the HMS.

Since the inclusive cross section is independent of azimuthal angle φ, the accep-

tance is a function of only two variables, A(δ, θ) where δ is the momentum fraction
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θ and is the polar angle . Before calculating the acceptance the solid angle of each

θ bin is calculated. During the cross section analysis events are binned in twenty θ

bins from −0.035 to +0.035 radian. For each bin the solid angle is calculated from a

Monte Carlo. First, events are generated within the range |X ′| < 0.1 and |Y ′| < 0.1

and than the number of events that passed through the acceptance of the HMS are

compared to the number of initially generated events. In Fig. 42 the thickness of the

blue region is the width of the θ bin (0.0035 radian). If the aperture is determined

by the collimator only, the solid angle will be the blue region, but since the HMS has

other apertures, the real solid angle is determined in the following way. The solid

angle for that given θ bin is calculated as the ratio of number of events in red region

to number of events in the blue region (events are sampled within |X ′| < 0.08 and

|Y ′| < 0.04) multiplied by total solid angle of 4X ′Y ′.

To calculate the acceptance function A(E ′, θ) events are generated in X, Y , Z, δ,

X ′, Y ′ and binned in E ′, θ. In general it is convenient to use W 2 bins instead of δ(E ′)

bins. There are several advantages in using W 2 bins over δ bins. For example, in the

kinematic range where the cross section varies significantly the density of W 2 bins is

higher than the density of δ bins. Also the radiative corrections are calculated at the

centers of the W 2 bins, reducing the model cross section interpolation errors.

In this analysis W 2 binning is not done in a direct way. Instead of binning the

data in W 2 bins, data are binned in E ′ bins in such a manner that the lowest and

the highest E ′ bins are within the known range of the HMS momentum acceptance

of |δ| < 8 and at the same time correspond to a point in the W 2 grid. Here the W 2

grid points are given by this formula W 2
i = 0.05 + dW 2 × i, where i = 0, 150 and

dW 2 = 0.04 GeV2. This binning method is chosen over the direct W 2 binning based
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Figure 42: Solid angle calculation for each theta bin. The blue region is the solid
angle of a theta bin when there is no aperture, the red region is when the aperture of
HMS is applied. The solid angle is equal to the ratio of events with aperture on and
off multiplied by the total solid angle of 4X ′Y ′.

on the following consideration: the acceptance does not always include a symmetric

region in θ about the central value in W 2, for W 2 bins corresponding to high or

low values of δ at the central angle only part of the θ acceptance lies within the

spectrometer acceptance. The result is the maximum bin centering corrections are

at the edge of the acceptance, where the acceptance is more poorly known than in

the central part. Therefore, for W 2 bins at the edge of the momentum acceptance,

the systematic error is larger than for W 2 bins in the central part. Also, taking into

account the fact that there are less events available at the edge of the acceptance, the

edge bins will have bigger statistical errors.

There are three main elements in the Monte Carlo simulation code: the event gen-

erator, the transport of the particles through the magnets, and the list of materials
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and apertures that cause multiple scattering or stop the particles. The initial coordi-

nates are randomly generated along the target length, while the quantities δ, θ and φ

are chosen randomly within their allowed limits. The particle is transported through

the spectrometer to the detector hut using the computer program COSY Infinity [78],

which models the magnetic part of the spectrometer, the magnet positions, their in-

ternal dimensions and their magnetic field maps. If the particle successfully traversed

the spectrometer and the detector stack, it is considered a success and contributes to

Nsuccess. The spectrometer acceptance is calculated by the following formula,

Acceptance(θi − θo, E ′j) =
Nsuccess(θi − θo, E ′j)
Ngen(θi − θo, E ′j)

, (3.80)

where Ngen(θi − θo, E ′j) and Nsuccess(θi − θo, E ′j) are the number of events generated

and detected in a given (θi − θo, E ′j) bin, respectively. In the cross section analysis

data are binned in (θi − θo, E ′j) bins and each bin is corrected by the corresponding

Acceptance(θi − θo, E ′j). In Fig. 43 the HMS acceptance is shown for PHMS = 0.44

GeV and θ =75o, obtained by generating five million Monte Carlo events. One can

see that the momentum range used in this analysis (|δ| < 8%) is well within the

flat range, while the angular acceptance falls off quickly at the age of the angular

acceptance. This fall off is due to the shape of the collimator.

During the cross section analysis a systematic dependence of the experimental

cross section divided by the model cross section was observed and is shown in Fig. 44.

After studying this effect under different kinematic conditions and offsets no target

or kinematic (E,E ′, θ) dependence was found. This effect is believed to be caused

by mis-calibration of the optics of the HMS. In order to correct for this effect a set

of runs are selected at different HMS central momenta and angles. These runs are
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Figure 43: HMS Acceptance function at PHMS = 0.44 GeV and θ = 75 degree,
calculated by HMS Single-Arm Monte Carlo program.

selected to have good agreement with the model cross section in order to rule out

any model dependence in the extraction of the correction function. The cross section

ratios are parametrized as function of δp and are used in cross section analysis in

bin-by-bin basis. The uncertainty associated with this parametrization is ∼ 0.6%,

estimated from the spread of data to the fit.

In addition, the position uncertainties on the target, collimator, magnets, and

detector package contribute to both the point-to-point and normalized acceptance

uncertainties. The total point-to-point uncertainty due to the position uncertainties

on the target, collimator, magnets, and detector package is ∼ 0.3%. As a result,

the total point-to-point (kinematic dependent) uncertainty on the acceptance correc-

tion was ∼ 0.7%. The normalized (kinematic independent) uncertainty on the HMS

acceptance is ∼ 0.6%, which is determined by changing the positions slightly of the

collimator, magnets, and detector package respectively in the HMS Single-Arm Monte
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Carlo code and checking how this affected the extracted cross sections.

3.4.10 Bin Centering Corrections

The goal of the analysis is to extract electron-nucleus inclusive differential cross sec-

tion for a range of E′ at a fixed scattering angles. During data acquisition each run

is taken at a particular HMS angle and momentum. Since the HMS spectrometer

has a relatively large angular acceptance of ± 2 degrees, the cross section can vary

greatly across the angular acceptance. In order to calculate the cross section for each

E′ bin at fixed θ value, a θ bin centering correction must be done. If the cross section

varied linearly across a symmetric θ acceptance there will be no need for bin centering

correction.

This correction removes the cross section dependence in the angular acceptance

range using a known model cross section. The bin centering correction depends on

the model cross section used, and the model dependence in this correction can be a
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large systematic uncertainty in the analysis. The correction is applied by rescaling

each (E ′, θ) bin by the ratio of its cross section at the center of the bin to the central

cross section (E ′, θo). The bin centering correction for (E ′i, θo) bin is calculated with

this formula:

BC(E,E ′, θ) = σmodelrad (E,E ′i, θ
central)

/
σmodelrad (E,E ′i, θ), (3.81)

where E ′i is the center of the E ′ bin, σmodelrad is the total radiated cross section.

3.4.11 Radiative Corrections

The differential cross sections measured in the resonance region for electron-nucleon

scattering may have large contributions from processes other than the one photon

exchange approximation. This is also called Born approximation and is shown in

Fig. 45. The Feynman diagrams for higher order electromagnetic processes in α are

shown in ( 2, 3, 4, 5, ) which include vacuum polarization (creation and annihilation

of particle-antiparticle pairs), vertex processes (emission and reabsorption of virtual

photons), and bremsstrahlung (emission of real photons in the field of the nucleon

during interaction).

The cross section measured in the kinematic range of this experiment may have

up to a 30% contribution from those processes. In order to determine the differential

cross section for the one−photon exchange process, all the other contributions from

the higher order processes in α have to be estimated and corrected for in the measured

cross section.

The impact of the radiative process to experimental data has the following three

effects:
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Figure 45: 1) is the lowest-order diagram for charged-lepton-nucleon scattering. 2)-4)
are the lowest-order electromagnetic radiative corrections.

• The incoming particle’s momentum may be reduced, thereby changing the kine-

matic configuration for the event, and also the probability for the interaction

(through the energy dependence of the cross section).

• The outgoing particle’s momentum may be reduced, moving events from one

kinematical configuration to another.

• The overall cross section for the process in a particular kinematical configuration

will change.

These effects are taken into account by applying radiative corrections to the mea-

sured cross section. Electromagnetic radiative effects in electron scattering are divided

into two categories: external and internal. The external radiative processes, shown

in Fig. 46, can take place before and after the scattering in the material the electrons

passes through (the largest contribution happens in the target material). Both cases
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have to be corrected in order to calculate the Born cross section. Corrections for

ionization energy losses are also applied, but have a much smaller contribution than

the radiative processes.

e e’

Figure 46: The Feynman diagrams for external radiative processes.

Internal effects occur at the scattering vertex and are calculable in Quantum

Electrodynamics. The internal effects include internal bremsstrahlung (emission of

photons in the field of the nucleon during the scattering process), vacuum polarization,

vertex processes, and multiple photon exchange (important at low Q2). In the first

order in α there is also contribution from the diagrams of vacuum polarization by

hadrons, which is not shown here but is taken into account in Ref. [79].

The program used to calculate radiative corrections for this experiment, including

both the internal and external effects and the elastic tail, are based on the program

developed at SLAC which is described in Ref. [80].

The measured cross section is the combination of radiated elastic, quasi-elastic

and inelastic cross sections, are depicted in Fig. 47, and the total measured cross

section is the sum of all three,

σmeas = σradel + σradqe + σradinel , (3.82)

and in inclusive experiments the inelastic and quasi-elastic cross sections are not
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Figure 47: Feynman diagrams of processes present in the kinematic range of this
experiment.

separated.

The total radiative cross section (quasi-elastic + inelastic) is proportional to the

Born cross section, and can be calculated by the following formula:

σinel+qeBorn =

[
σmeas − σradel

σmodrad − σradel

]
× σmodBorn (3.83)

where σmodrad is the total radiated model cross section (internal + external ), σradel is the

elastic radiated model cross section (internal + external ). The radiated model cross

section is the convolution of internal and external radiative cross sections:

σmodrad = internal ⊗ external ⊗Born. (3.84)

For this experiment, the external radiative corrections are computed using a complete

calculation of Mo-Tsai [81] with a few approximations. This approach, MTEQUI, uses

the equivalent radiator approximation [80]. In the equivalent radiator method, the

effect of internal Bremsstrahlung is calculated using two hypothetical radiators of

equal radiation length, one placed before and one after the scattering. It is important

to note that the energy-peaking approximation is not used for the computation of
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external contributions. The internal contribution in MTEQUI method is evaluated

by setting the radiation length of the material before and after the scattering point

to zero, and ignoring the target length integral (see Eqn. C1 in Ref. [81]).

The internal radiative corrections σradint have been calculated using the formalism

of Bardin [79]. The calculations were done for all diagrams in Fig. 45 without any

approximation.

In order to reduce the effects of any approximations in treating the external ra-

diative effects we use the following expression to calculate σBorn,

σmodelrad =
∑

ii=el,qe,inel

σradii,int(Bardin)×


∑

ii=el,qe,inel

(σradii,int + σradii,ext)∑
ii=el,qe,inel

σradii,int


Mo,Tsai

. (3.85)

It was found that using Mo and Tsai’s MTEQUI method to treat external radiative

correction is consistent for targets with different radiation lengths, see Ref. [80].

The uncertainty on the cross sections due to the radiative correction is estimated

at 1% for the ε dependence, and the normalized uncertainty is also ∼ 1%, according

to the radiative correction studies done at SLAC [80]. The ε dependent uncertainty

and normalization uncertainty caused by the two-photon corrections to the one pho-

ton exchange diagram are estimated to be ∼ 0.3% respectively, according to the

results of an early SLAC experiment [90]. That experiment measured the difference

of electron/positron cross sections at Q2=1.2-3.3 GeV2 and W2=1.3-17.0 GeV2 range

(comparable to the kinematic range of this experiment) and found σe+/σe−=1.0027±

0.0035 with no significant dependence on Q2 or W2. Since no significant difference

was found between electron/positron cross sections in that experiment, one can con-

clude that two photon exchange contributions are small in the kinematic range of this
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experiment.

In the kinematic range of this experiment the radiative corrections are a maximum

of 30%. Systematic errors due to contributions from second order in α processes are

set at 3% of the size of the quasi-elastic tail, relative to the inelastic [82], see Fig. 48.

The error is less than 1% for W 2 > 1.4 and has slight ε (beam energy) dependence.

The Born model cross section used for this analysis is discussed in Sec. 3.5. The

radiative correction is applied to measured cross sections on bin-by-bin basis to get

the corrected cross sections.

The recoil polarization measurements of the form factor ratio µpG
p
E/G

p
M [83, 84]

contradict the Rosenbluth measurements (See Ref. [85] for a compilation and refer-

ences) and it has been suggested that the earlier experiments might have not have

fully understood their systematic errors or had normalization problems. The Rosen-

bluth measurements have been reexamined [86] and this global reanalysis could find

no systematic or normalization problems that could account for the discrepancy. The

author of Ref. [86] concluded that a modest linear ε-dependence correction (of origin

yet unknown) to the cross section measurements might explain the difference. Sev-

eral investigators [87, 88, 89] have explored the possibility of two-photon exchange

corrections (which would be less important in the direct ratio measurement of recoil

polarization) to explain the discrepancy. While only incomplete calculations exist,

the results of Ref. [87, 89] account for part of the difference.

As this experiment exploits the Rosenbluth technique the question naturally arises

whether two-photon effects might play role. Unfortunately no calculations have been

done specifically to answer this question. Nonetheless we have attempted to gauge

what effect an ε dependence might have in our results. To do so we artificially
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introduced a 2% ε dependence in the radiative corrections which resulted in ±0.028

uncertainty in R, see Sec. 4.4. Hence we can conclude that for our specific conditions

the neglect of two photon effects (as manifested in a ε-dependence) has only modest

consequences.

3.4.12 Coulomb Correction

In the field of high Z nuclear targets the incoming and outgoing electron wave func-

tions are affected by the Coulomb field. From the classical point of view the incoming

electron accelerates in the field of the positive charged nuclei and the scattered outgo-

ing electron decelerates. This effect causes an increase in the momentum of incoming

beam electron and a decrease in the momentum of the scattered electron relative to

the vertex values. At high enough beam energies this effect is negligible while at the

beam energies of this experiment it is not and has to be taken into account. The

change of the vertex kinematic variables can have a big impact on the measured cross

sections. The change of the energy of the incoming electron will change the cross

section of the process of interest while the change of the scattered electrons energy

change will cause it to populate a different kinematic bin and change the measured

cross section.

Coulomb corrections have the result that the plane wave Born approximation

loses its validity and hence requires a correction. For this experiment the Effective

Momentum Approximation (EMA) is used as described in Ref. [91] and discussed

below.

Assuming a spherical charge distribution in the nucleus, the electrostatic potential

inside the charged sphere can be defined as followed:
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V (r) = −3α(Z − 1)

2R
+
α(Z − 1)

2R

r

R
(3.86)

where the radius of A is given by this formula:

R = 1.1A1/3 + 0.86A−1/3. (3.87)

Because most the nucleons of heavy nuclei are located in the periphery of the nucleus,

taking the electrostatic potential at the center of the nucleus will be an overestimate

of the Coulomb effect. In the effective momentum approximation (EMA) [91], the

effective potential used is Veff ≈ (0.75 − 0.8)V (r = 0). This value for Veff agrees

with the extracted effective potentials from positron and electron inclusive scattering

experiments, see Ref. [92]. In order to take account the Veff , Q2 is replaced by Q2
eff

where

Q2
eff = 4(E + Veff )(E

′ + Veff ) sin2

(
θ

2

)
(3.88)

There are two methods to do Coulomb correction: one assumes that the Mott

cross section is unchanged while the nuclear spectral function is subjected to a trans-

formation when Q2 is replaced by Q2
eff defined above. The second method changes

both the Mott cross section (Q2 → Q2
eff and E ′ → E ′+Veff ) and the nuclear spectral

function. Also, for the second method a focusing factor for the incoming electron is

given by the following formula
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Figure 49: The Coulomb correction factor as a function of W 2, for low to high ε
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range) than for low energy (low ε range).
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Ffoc =
Ein + Veff

Ein
(3.89)

is applied. In this experiment the average potential of Veff = 0.775× V (r = 0, Z, A)

is used. The Coulomb correction is applied to extracted cross section in the following

way

σccmeas(E,E
′) = σmeas(E,E

′)× σmodel(E,E
′)

σCCmodel(E + Veff , E ′ + Veff )
× 1

F 2
foc

(3.90)

The Coulomb correction factors versus W 2 are shown in Fig. 49 for beam energies

2.1, 3.1, 5.1 GeV. For heavy nuclei, the Coulomb correction factor is significant,

reaching a maximum of ∼ 15% at low W 2, near the quasi-elastic peak. Different

beam energies indicate a different range in ε. The Coulomb correction is bigger for low

epsilon (low beam energy) data than for high epsilon data (high beam energy). It is

necessary to apply the Coulomb correction to properly extract the nuclear R=σL/σT .

3.5 Cross Section Model

The purpose of this experiment is to measure the Born cross section for inclusive

electron nucleus scattering in resonance region. Since the exact Born cross section

for inelastic electron-nuclei scattering is impossible to measure due to superposition

of different reactions (see Fig. 47) present in the kinematic range of this experiment,

a model cross section is necessary. Also a cross section model is necessary for the bin

centering correction, radiative corrections, and the Coulomb corrections.
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3.5.1 Quasi-elastic model

In earlier sections the scaling of the deep inelastic cross section has been discussed.

This refers to the observation that the cross section for scattering from a nucleon,

normally of function of two kinematic variables, reduces to a function of a single

variable, x = Q2

2mν
and reflects that the scattering takes place from a structureless,

point like object that is essentially free within the nucleon.

There exists a analogous scaling behavior in scattering from quasifree nucleons

in the nucleus [93]. In the PWIA quasi-elastic scattering, where the nucleons are

moving independently in the mean field of the nucleus, the cross section as a function

of final electron energy E ′ is a convolution of the spectral function S(k,E) with the

elementary electron-nucleon cross section σei. The spectral function S(k,E) is the

joint probability to find a nucleon with momentum k and separation energy E in the

nucleus. Schematically then,

d2σ

dΩdE ′
∝
∫
d~k

∫
dEσeiSi(k,E)δ()

where a summation over all the protons and nucleons is implied and the delta function

argument conserves energy and momentum.

At large momentum transfer the expression can be rewritten (with a few important

assumptions, see Ref. [93]) as

dσ2

dΩdE ′
=
∑
ei

σei ·K · F (y)

with K a kinematic factor and F (y) is the longitudinal momentum distribution. y is
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the scaling variable and is determined from energy conservation with ν = E − E ′,

ν +MA = [(MA−1 + EA−1)2 + ~k2]1/2 + [M2 + (~k + ~q)2]1/2.

y is the minimum momentum of the struck nucleon satisfying the previous expression

- the longitudinal momentum of the struck nucleon.

Hence the quasi-elastic cross section from a particular nucleus is a function F (y) of

a single variable, y, itself a function of ~q and ν, and is independent of them separately

- the cross sections scale. This is called scaling of the first kind.

The difference between x and y scaling is that in y scaling the struck object has

structure and must be accounted for through the division of the cross section by

the elementary elastic electron-nucleon cross section (which is a strong function of

momentum transfer). While useful for the modeling of the cross section, y scaling

can provide access to the nucleon momentum distribution n(k) through F (y), the

scaling function

F (y) = 2π

∫ ∞
−y

kdk

∫ Emax

Emin

dES(k,E)

and if Emax =∞ then

F (y) = 2π

∫ ∞
−y

kdkn(k)

with F (y) the longitudinal momentum distribution. Hence quasi-elastic scattering

would provide a direct measure of n(k).

n(k) = − 1

2πy

dF (y)

dy
.
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In a series of papers by Donnelly and Sick [94, 95, 96, 98] and collaborators it was

found that scaling of the quasi-elastic cross section could be extended to account for

the difference in atomic number A. This is scaling of the second kind. The scaling

variable ψ is given by the following formula

ψ =
1√
ξF

λ− τ√
(1 + λ)τ + κ

√
τ(τ + 1)

(3.91)

where λ, κ, τ are dimensionless energy, 3-momentum and 4-momentum transfers re-

spectively (these variables are normalized by a factor 1/mN , where mN is the nucleon

mass.). The new scaling variable ψ is related to y but lacks one important property, it

does not take account the small energy shift Eshift which is included in separation en-

ergy Es. An improved phenomenological dimensionless scaling variable is employed

in treatments of superscaling [97], which included the empirical shift Eshift. One

should note that scaling function is very sensitive to kF and yet it is possible to find

a value for it to line up all data on one curve. The dependence from Eshift is not that

pronounced but it needs to be taken into account to put the quasi-elastic peak in the

place where the scaling variable ψ is zero.

In order to fix this a new variable ψ′ is introduced, which has the same form as ψ

but the dimensionless variables λ and τ are shifted. The new scaling variable is given

by the following formula

ψ′ =
1√
ξF

λ′ − τ ′√
(1 + λ′)τ ′ + κ′

√
τ ′(τ ′ + 1)

(3.92)



123

A Eshift (GeV) kF (GeV )

Carbon 0.020 0.228

Aluminum 0.018 0.236

Iron 0.018 0.241

Copper 0.018 0.245

Table 7: Values of Eshift and kF for nuclear targets used in this experiment.

where λshift = Eshift/2mN , λ′ = λ − λshift, τ ′ =
√

(k2 − λ′2). The scaling function

in ψ′ is given by the following formula:

F (ψ′) =
1.5576

(1 + 1.7722(ψ′ + 0.3014)2)(1 + e(−2.4291ψ′))kF
, (3.93)

see Ref. [98] for details. The values of Eshift and kF are given in the Table 7. The

structure functions F1 and F2 are calculated using the following formulas

F1 = MpF (ψ′)GT/2

F2 = νF (ψ′)(νLGL + νTGT )

(3.94)

In the above equation the GL and GT are related to the nucleon elastic form-factors

and their values are taken from the Bosted fit for the nucleon form factors [85]. Pauli

suppression is taken into account according to Eq. B54 of Ref. [99]. From Table 7

one can see that the energy shift does not vary too much for different nuclei. The

values of kF don’t vary too much after carbon.

3.5.2 Inelastic Model

The kinematic range of this experiment covers W 2 = 0.0-4.5 GeV2 and

Q2 = 0.5-4.5 GeV2. The inelastic model cross section used in this experiment
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is based on the structure functions of proton and deuterium, as well as on the

EMC [100] effect measured in the DIS region. The proton structure functions are

extracted from an inclusive inelastic electron-proton cross sections fit described in

Ref. [101]. The fit is constrained by photoproduction data at Q2=0 and makes a

smooth transition to DIS at higher W2 values. The other important aspect of this

fit is that it is based on R = σL/σT obtained by Rosenbluth separation. Since it

is impossible to extract the on-mass shell neutron structure functions directly by

measuring them using a neutron target, a model based on the deuteron structure

function is used. The deuteron fit, described in Ref. [102], relies on a fit of the

ratio Rp = σL/σT and the assumption Rp = Rn. The fit includes photoproduction

and low Q2 data points and data from several other experiments. Since there are

not enough data at low Q2 and no Rosenbluth separation has been done only the

transverse portion of the cross section is fitted. Fermi motion is taken into account

in a Plane Wave Impulse Approximation (PWIA). The region (dip) between the

quasi-elastic peak and the ∆(1232) resonance is systematically under-predicted

at low Q2, possibly because Meson Exchange Currents (MEC) and Final State

Interactions (FSI) have been ignored. An additional empirical function was used to

fill in the missing strength in the dip region. RD for deuteron is evaluated by doing

Fermi-smearing to proton σL and σT described in Ref. [101]. The Fermi-motion of

the nucleons in the deuterium is taken into account using a PWIA calculation and

the Paris [103] deuterium wave function. After performing Fermi smearing of FD
1

and F P
1 the neutron FN

1 is calculated as

FN
1 = 2FD

1 − F P
1 (3.95)
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where FD
1 is deuterium structure function per nucleon. The structure functions of

the nuclei (A,Z) is calculated by the following formula,

FA
1 = 2ZFD

1 + (A− 2Z)FN
1

FA
2 = FA

1 (1 +RP )/(1 + ν2/Q2) /ν.

(3.96)

The structure functions given in the Eq. 3.96 are further corrected for the EMC effect.

The EMC effect has been studied by comparing F2 measured on bound nucleons in

nucleus A and deuterium (x = 0.0085− 0.09) [104], (x > 0.125) [105].

EMC(x,A) = (σA/σD)is = C(x)Aα(x) (3.97)

where logC(x) = a + b log(x) + c(log x)2 and α(x) is an eight order polynomial

function of x = Q2/(2Mν). The “is” subscript means the isoscalarity correction

(taking into account the fact that Z6=A/2 for all nuclei). For x lower than 0.0085 the

EMC correction is taken to be that for x = 0.0085 (no reliable data exists below this

value). For x higher than 0.7 the EMC correction is taken to be that for x =0.7, and

the rest is taken into account when Fermi smearing is done. An empirical fit form is

added to the dip region between the quasi-elastic peak and the ∆(1232) resonance.

The function has the same form as in the deuteron fit.

3.6 Global Fit and Model Iteration

In order to extract the Born cross section from experimental data a model cross

section is necessary. This can be seen from Eq. 3.83 where the extracted cross section

is proportional to the model cross section. Also, the model cross section is used to
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calculate radiative corrections (Eq. 3.83), Coulomb corrections (Eq. 3.90) and apply

bin centering corrections (Eq. 3.81). Since the model cross section is used to apply

all the corrections mentioned above, the extracted cross section clearly depends on

knowledge of the model cross section. In order to minimize the model dependence,

an iteration procedure is used. The procedure is described below, step-by-step.

1. The Born cross section is extracted using the model cross section described in

Sec. 3.5. The same model is also used to calculate radiative corrections and bin

centering correction.

2. The extracted cross section is combined with the cross section results of other

experiments [106, 107], some of them done dating from 1970. These data are

fitted with the model cross section described in Sec. 3.5 with some additional

corrections. These corrections are listed below. The quasi-elastic structure

function F qe
1 is multiplied by polynomial function of fourth degree in y. The

parameters of the polynomial are constrained in such way that the value of the

polynomial function is always positive in the kinematic range of quasi-elastic

scattering. The inelastic structure function F in
1 is multiplied by a function of

W 2 and Q2 [108]. When Q2 →∞ the value of this function goes to 1 and does

not have any impact on F in
1 . A linear A (nuclear) dependence is introduced to

RA. The result of the first iteration is shown in Fig. 50.

3. The corrected model is used to calculate radiative corrections again and redo

the cross section analysis. Steps 1 and 2 are repeated until the fitted model

cross section converges.

4. Using the corrected model the RA−RD is extracted (by means of a Rosenbluth
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Figure 50: The agreement between experimental data and model cross section is
shown for six Q2 bins after doing the first iteration of the global fit.
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separation) for each W 2 bin. Since the Q2 dependence of RA−RD is very weak

two Q2 bins, 0.5−2.5 GeV2 and 2.5−4.5 GeV2, are used to parametrize the

RA − RD versus W 2. The parametrizations of RA − RD are used in the global

fit program to run steps 1,2,3,4 repetitively until no improvement in model cross

section can be found.

3.7 Extraction of R and F2

The electron-nuclear inclusive scattering cross section can be written in terms of

photoabsorption cross sections for transverse (helicity ± 1) photons and longitudinal

(helicity 0) photons, see Eq. 3.98.

1

Γ

d2σ

dΩdE ′
= σT + εσL . (3.98)

In Eq. 3.98, where Γ is the flux of transverse virtual photons, the right side is a

function of W 2, Q2 and ε (beam energy). In order to determine σT and σL from this

equation, measurements are done at the same (W 2, Q2) but different ε (beam energy).

After calculating σT and σL the structure functions R and F2 can be determined by

the following formulas:

R =
σL
σT

and (3.99)

F2 = ν
K

4π2α
(σT + σL)

Q2

Q2 + ν2
, (3.100)

where K is called “equivalent photon energy”. In this experiment the Rosenbluth
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Figure 51: An example of Rosenbluth separation for carbon target. The slope of the
curve is RA −RD, the intercept is σAT /σ

D
T .

separation is done using the nuclear cross section ratio to the deuterium cross sec-

tion [80]. The ratio of the cross sections is given by

σA
σD

=
σTA
σTD

[1 + ε′ (RA −RD)] , (3.101)

where RD is the deuterium R and ε′ = ε/(1 + εRD). This method has it’s advantage

compared to Rosenbluth separation method which uses Eq. 3.98. If Rosenbluth sep-

aration is done using Eq. 3.98, systematic uncertainties may have big impact. Since

εRD is small, it’s impact on ε′ is small, for a 20% uncertainty when RD = 0.2, the

uncertainty on ε′ is only 4%. Taking the ratios of cross sections σA/σD cancels most

systematic uncertainties: acceptance, beam charge, offsets in beam energy, HMS an-

gle, HMS momentum, model dependence to some extent, radiative corrections.
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An example of Rosenbluth separation is shown in Fig. 51. Cross sections are

not measured at exactly same W 2, Q2 values, instead, for each W 2 there are several

Q2s, which can be combined to have one average Q2
mean value. In this analysis the

values of Q2s that are combined to perform Rosenbluth separation are chosen to be

within a ∆Q2 =0.5 GeV 2 range (Q2
mean is calculated as the mean of these Q2s). After

calculating Q2
mean, all cross sections are centered to the same value of W 2, Q2

mean using

the model cross section, via

σ(W 2, Q2
mean) = σexp(W

2, Q2)
σmodel(W

2, Q2
mean)

σmodel(W 2, Q2)
. (3.102)

If the model cross section correction is greater than 50% that particular point is

excluded from the fit.

In order to have enough range in ε, each Rosenbluth separation is only done if the

∆ε > 0.3 condition is satisfied. Each data point is used only once to avoid correlated

uncertainties. For this experiment 280 Rosenbluth separations are done for carbon

and aluminum, 120 for iron, 110 for copper. A program is written to search the cross

section data for Rosenbluth separation candidate cross section values and perform

the Rosenbluth separation. The program is designed in such a way that adding data

from another experiment to the data set of this experiment requires no modification.

An algorithm was developed to exclude a given cross section value being used more

than once, and to find Q2 data within ∆Q2 =0.5 range while at same time have the

minimum spread around the calculated mean Q2
mean value. This minimizes the model

dependence introduced by Eq. 3.102.

Though R can be extracted in a model dependent way by using the expression
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d2σ

dΩdE ′
= σMott

2MxF2

Q2ε

(
1 + εR

1 +R

)
, (3.103)

the experimental cross section and a model of the structure function F2, it was not

done for this analysis.

3.8 Systematic Uncertainties

The total systematic uncertainty in the cross section extraction is taken as the sum

in quadrature of all systematic uncertainties of the quantities that contribute to the

cross section.

Systematic uncertainty can be divided into two groups: point-to-point uncer-

tainties and normalization uncertainties. Point-to-point uncertainties are caused by

changes in experimental conditions during data acquisition, and therefore their effect

is uncorrelated between different data points. These include uncertainties arising from

a variation in the efficiencies of detectors and data acquisition systems, changes from

one spectrometer setting to another. Point-to-point uncertainties can be removed

if the same measurement is done more than once, while in contrast, normalization

uncertainties can’t be avoided by doing more measurements. An example of normal-

ization uncertainty can be a systematic shift in the offset of a current measurement

device, target thickness measurement, acceptance, etc.

Kinematic uncertainties are caused by uncertainty in beam energy, spectrometer

momentum, and spectrometer angle. These uncertainties are estimated from a study

of elastic electron-proton scattering data. A procedure described in Ref. [76] provides

a way to estimate the uncertainties in beam energy, spectrometer momentum, and
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Section Quantity Uncertainty δσ%

Beam Energy 0.05% 0.25%

3.1 Beam Charge 0.3 µA 0.37-0.75%

Scattered e′ Energy 0.06% 0.025%

Scattered e′ Angle ∼ 0.2 mrad 0.3%

3.4.6 Elect. Dead Time Correction 27.0% 0.04%

3.4.6 Comp. Dead Time Correction 0.2% 0.2%

3.4.9 Acceptance 0.6% 0.6%

Model Dependence 0.6% 0.6%

3.4.11 Radiative Correction 1.0% 1.0%

Table 8: Normalization systematic uncertainties in the experimental parameters (col-
umn 3) and the corresponding systematic uncertainties in the differential cross section
(column 4).

spectrometer angle, and their values are shown in the third column of Table 8. A

model cross section is used to estimate their impact on measured cross section and is

shown in the fourth column of Table 8.

The beam charge measurement is discussed in Sec. 3.1. The point-to-point un-

certainty is estimated to be 0.3%. This is obtained by studying the residuals of the

measured currents during the calibration procedure. An additional scale uncertainty

of 0.3% is assumed for the charge measured, due to the UNSER calibration. This is

estimated by examining runs taken with the same kinematics settings but different

beam currents on a carbon target ( with 10 µA steps starting from 20 µA up to 100

µA).

The scale uncertainty of the HMS acceptance correction is 0.6%. This is estimated

by changing positions of the target, collimator, magnets and then calculating the

acceptance. Cross sections are extracted using this shifted acceptance. The spread



133

Section Quantity Uncertainty δσ%

Beam Energy 0.05% 0.25%

3.1 Beam Charge 0.3 µA 0.3%

Scattered e′ Energy 0.06% 0.025%

Scattered e′ Angle ∼ 0.2 mrad 0.3%

3.4.6 Elect. Dead Time Correction 27.0% 0.008%

3.4.6 Comp. Dead Time Correction 0.2% 0.2%

3.4.7 Trigger Efficiency 0.007% 0.007%

3.4.8 Tracking Efficiency 0.15% 0.15%

3.4.2 C̆erenkov Efficiency 0.15% 0.15%

3.4.2 Calorimeter Efficiency 0.05-0.2% 0.05-0.2%

3.4.4 Charge Symmetric Background 0.1-0.4% 0.1-0.4%

3.4.9 Acceptance 0.7% 0.7%

3.4.11 Radiative Correction 3.0% of QE ≤ 1.0%

Table 9: Point-to-point systematic uncertainties in the experimental parameters (col-
umn 3) and the corresponding systematic uncertainties in the differential cross section
(column 4).

of distribution of the ratio of shifted cross sections to cross section with a known

positions of the target, collimator, magnets is assigned as the systematic uncertainty

for the acceptance correction. The momentum offset correction discussed in Sec. 3.4.9

contributes about 0.7% point-to-point uncertainty.

No normalization uncertainty is assigned to the tracking efficiency. At a fixed

rate the tracking efficiency should scale linearly with the DC time window. This was

studied by varying the DC TDC time window and plotting the tracking efficiency

versus time window width. No nonlinearity is observed according to Ref. [77]. Also

a point-to-point uncertainty of 0.15% is assigned to the tracking efficiency based on

the spread of the points in tracking efficiency versus SCIN rate plot, as in Fig. 41.
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The trigger efficiency is better than 99.9%, and no scale uncertainty is assigned

to it. The point-to-point uncertainty is 0.007%, see Fig. 39, and is negligible.

Electronic and computer dead times are discussed in Sec. 3.4.6. A scale uncertainty

of 0.04% (20 kHz average rate) is found for the electronic dead time, mainly from the

deviation of the measured value of τ (from the plot of electronic dead time versus

pretrigger rate, electronic dead time is found to be ∼ 80 ns ) from the expected value

of 60 ns. The point-to-point uncertainty (spread of electronic dead time from expected

value defined by 1− 60ns× rate) is 0.008% and also is negligible. The uncertainty in

computer dead time is estimated by taking runs at the same kinematics but different

prescale factors. Results are found to agree within 0.2%, see Ref. [76]. A point-to-

point uncertainty of 0.2% is assigned.

Pion contamination can be up to 3% at some kinematics. It should be the same

for positron runs, so no explicit subtraction is done. It is automatically subtracted

when the charge symmetric background is subtracted. The uncertainty is absorbed

into the charge symmetric background uncertainty.

The charge symmetric background is discussed in Sec. 3.4.4. At scattered electron

angles smaller than 50o (low E′) point-to-point uncertainty is estimated to be 0.1%,

for angles greater than 50o (high E′) the point-to-point uncertainty is estimated to

be 0.4%, (see Fig. 36).

The effect of the model on the bin centering corrections is studied by varying the

shape of the model. This is done by supplying an artificial Q2 dependence as input

to the individual DIS and QE cross sections. The point-to-point of 0.5% uncertainty

due to model dependence is assigned as a result of the study.

In the kinematic range of this experiment radiative correction are maximum 30%.
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The systematic error for higher order α contributions are set to be 3% of the size

of the quasi-elastic tail, relative to the inelastic [82]. The uncertainty on the cross

sections due to the radiative correction is estimated at 1% for ε dependence, and

the normalized uncertainty is also ∼1%, according to the radiative correction studies

done at SLAC [80].
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Chapter 4

Results and Discussions

In the last chapters we have discussed the calibration of the detectors and the correc-

tions applied to the experimental data to extract the cross sections. In this chapter we

will present the results of the analysis. First, the extracted differential cross sections

for the aluminum target will be presented. Next, the results of nuclear dependence

of R = σL/σT will be shown and nuclear dependence of RA − RD and RA − RC will

be discussed. The Rosenbluth separated structure functions R = σL/σT and F1, F2

and FL will be compared with a model obtained from an empirical fit performed in

the nuclear resonance region. Next, the extracted F2 structure function using model

cross sections will be discussed in terms of quark-hadron duality. Finally, Rosenbluth

separated structure functions will be used to study quark-hadron duality in nuclei.

Before beginning this presentation of the results I will take a short detour to discuss

how elastic electron-proton scattering is used to gauge our estimate of systematic

errors.

4.1 Elastic Electron-Proton Cross Section

Elastic electron-proton scattering can be used as a cross check of the systematic un-

certainties present in the setup of an experiment. Since the elastic electron-proton

cross section has been measured in the past with great precision, any deviation from

that measurement would indicate a problem present in the collected data or in cali-

brations. In addition, elastic electron-proton scattering can be used to determine if
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normalization uncertainties like charge, spectrometer acceptance and detector ineffi-

ciencies and dead times are taken into account correctly.
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Figure 52: Ratio of extracted elastic cross sections to a fit of the world’s elastic
data [86]. Point-to-point systematic errors are also shown and are the dominant
uncertainty. The dashed lines indicate ± 2% range.

In this experiment elastic data are taken at twelve different kinematic settings.

The elastic data were analyzed using the same technique as the data in this experiment

with a few exceptions. In addition to the cuts used in resonance cross section calcu-

lation, a cut 0.8 < W 2 < 1.15 GeV2 is applied to avoid the pion electro-production

region. In order to compensate for radiated elastic events with W 2 > 1.15 GeV2 (low

W 2 bins radiate to higher W 2 bins) a correction factor is calculated and applied to

each θ bin. For each run the elastic cross sections is averaged over θ bins using an

elastic cross section model and the results are shown at a given central Q2 value in

Fig. 52. These elastic cross sections agree with the world’s elastic cross section data

within better than 2%. Since the measurement of elastic cross sections are more sen-
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sitive to kinematic offsets than inelastic resonance cross section, it is expected that

systematic uncertainties in the resonance region are, in the worst case, the same as

in the elastic case. For more information about elastic electron-proton cross section

extraction method see Ref. [109].

4.2 Differential Cross Sections

The method of extracting the cross sections was discussed in the Section 3.4. The

differential cross sections were extracted for four different targets: carbon, aluminum,

iron and copper. Carbon and aluminum data were taken in the range 0.0 < W 2 < 4.5

GeV2 and 0.5 < Q2 < 4.5 GeV2. For iron data were taken in the range 0.0 < W 2 <

4.5 GeV2 and 0.5 < Q2 < 2.5 GeV2, and for copper 0.0 < W 2 < 4.5 GeV2 and

2.5 < Q2 < 4.5 GeV2.

In the analysis process, the data were stored in equally spaced W 2 = 0.04 GeV2

bins. After iterating the model described in the Section 3.6, double differential electro-

production cross sections were extracted.

Figures 53 to 62 show examples cross section spectra for aluminum (cross sections

for C, Fe, and Cu are in Appendix 1.3). The blue solid curve in these figures is the

fit to the extracted cross sections of this experiment. The red curve is the fit based

on proton and deuteron fits described in the Section 3.6 and was used as the starting

input cross section model in this analysis. Before starting the iteration procedure,

77% of the cross section points agreed within 5% of the corresponding model value,

after the iteration procedure 90% agreed. The iterative procedure is stopped when

convergence is achieved. Convergence is confirmed by taking the difference with the

extracted cross sections between successive iterations and making sure that the differ-



139

ence is less than 0.5%. In total three iterations were necessary to achieve convergence.

Only the statistical uncertainty of the data is shown in the figures, and it is typically

smaller than the symbol size.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800  = 45θE = 2.10 GeV, 
2 = 0.5-0.9 GeV2Q

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

Old model

New model

Data

 = 60θE = 2.10 GeV, 
2 = 0.9-2.1 GeV2Q

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100  = 75θE = 2.10 GeV, 
2 = 1.3-2.7 GeV2Q

/d
E

'(n
b/

sr
/G

eV
)

Ω
/dσ2 d

)2 (GeV2        W

Figure 53: Extracted differential cross section for aluminum compared to the model
cross section.
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Figure 54: Extracted differential cross section for aluminum compared to the model
cross section.
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Figure 55: Extracted differential cross section for aluminum compared to the model
cross section.
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Figure 56: Extracted differential cross section for aluminum compared to the model
cross section.
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Figure 57: Extracted differential cross section for aluminum compared to the model
cross section.
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Figure 58: Extracted differential cross section for aluminum compared to the model
cross section.
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Figure 59: Extracted differential cross section for aluminum compared to the model
cross section.
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Figure 60: Extracted differential cross section for aluminum compared to the model
cross section.
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Figure 61: Extracted differential cross section for aluminum compared to the model
cross section.
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Figure 62: Extracted differential cross section for aluminum compared to the model
cross section.
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4.3 Cross Section Ratios and Extraction of RA −RD

During the running period of this experiment the experiment E06-009 [69] took data

on a deuterium target at the same kinematic points as the current experiment. In

order to study the nuclear dependence of R, the deuteron cross sections were also

extracted by the author in addition to the cross sections from heavier nuclei of this

experiment.

The ratio of cross sections σA/σD are shown in Figs. 63 to Fig. 67. The cross sec-

tion ratios of nuclear targets to deuterium are indicated by different colors. The three

dip regions (where enough W 2 range exists) correspond to the nucleon resonances P33

(W 2 = 1.52 GeV2), S11 (W 2 = 2.28 GeV2), and F15 (W 2 = 2.82 GeV2). Since the

Fermi momentum of deuteron is the smallest of all nuclei, the resonance structure is

not washed out, and the cross sections for deuteron at the positions of resonances are

larger than that of other nuclei. Therefore, resonances are seen as dips in the cross

section ratios. Coulomb corrections were applied to the cross section ratios shown in

these figures as discussed in Section 3.4.12 and the strength of the correction is shown

in Fig. 49. Since these are ratios of cross sections and not of separated structure func-

tions, therefore it is necessary to assume that there is no nuclear dependence of R in

order to interpret these data. This follows from Eq. 4.104 below.

The nuclear to deuteron cross section ratio can be written in terms of structure

function R as shown in the following equation

σA
σD

=
σAT
σDT

[
1 + εRA

1 + εRD

]
≈ σAT
σDT

[1 + ε′ (RA −RD)] (4.104)

where ε′ = ε/(1+εRD). At fixed values of W 2 and Q2 the right side of this equation is



150

)2 (GeV2W
2.5 3 3.5

Dσ/
Aσ

0.8

1

1.2

C

Al

Fe

 = 0.55 - 0.952 =  45.0 , QθEbeam =  2.095 , 

)2 (GeV2W
1 2 3

Dσ/
Aσ

0.8

1

1.2

C

Al

Fe

 = 0.94 - 2.192 =  60.0 , QθEbeam =  2.095 , 

)2 (GeV2W
0 1 2 3

Dσ/
Aσ

0.8

1

1.2

C

Al

Fe

 = 1.41 - 2.852 =  75.0 , QθEbeam =  2.095 , 

)2 (GeV2W
3.5 4 4.5

Dσ/
Aσ

0.8

1

1.2

C

Al

Fe

 = 0.23 - 0.312 =  15.0 , QθEbeam =  3.116 , 

)2 (GeV2W
2 3 4 5

Dσ/
Aσ

0.8

1

1.2

C

Al

Fe

 = 0.56 - 0.992 =  25.0 , QθEbeam =  3.116 , 

)2 (GeV2W
2 3 4 5

Dσ/
Aσ

0.8

1

1.2

C

Al

Fe

 = 0.83 - 1.672 =  35.0 , QθEbeam =  3.116 , 

Figure 63: Cross section ratios of nuclear targets to deuteron versus W 2 is shown.
Colors indicate different nuclear targets. The three dip regions (where enough
W 2 range exists) correspond to the nucleon resonances P33 (W 2 = 1.52 GeV2), S11

(W 2 = 2.28 GeV2), F15 (W 2 = 2.82 GeV2) and are indicated by arrows. Since the
Fermi momentum of deuteron is the smallest of all nuclei, the resonance structure is
not washed out for it, and the cross sections for deuteron at the positions of reso-
nances are larger than that of other nuclei. Therefore, resonances are seen as dips in
the cross section ratios.
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Figure 64: As in Fig. 63.
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Figure 65: As in Fig. 63.
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Figure 66: As in Fig. 63.
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Figure 67: As in Fig. 63.
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function of ε′ only and represents the equation of a straight line with constant σAT /σ
D
T

and slope (σAT /σ
D
T )(RA −RD).

Since εRD is small, the uncertainty of ε′ due to RD is negligible. The RA − RD

results are consistent with zero for W 2 > 2 GeV2, in agreement with DIS data where

no significant A dependence of R was found. These results indicate that contributions

to R from nuclear effects are small. The Q2 range of this data is not low enough to

investigate the predictions of Miller [51] who suggests a significant enhancement of

longitudinal cross section at x = 0.4 and Q2 = 0.3 GeV2 for heavy nuclei. This will be

possible when the results of E02-109 [18] experiment are available. Combining these

data with the data of E02-109 will allow to perform a precise Rosenbluth separation

in wide range of Q2 for carbon, aluminum and iron.

The observed enhancement of RA − RD near W 2 = 1.5 GeV2 (Figs. 68 and 69)

indicates some nuclear dependence, which vanishes with increase of Q2 and with

nuclear number A. A final conclusion about the origins of the enhancement of RA−RD

can not be drawn until the analysis of experiment E06-009 [69] is complete and

precision deuteron data become available which will allow a better representation of

σD in Eq. 4.104. These data will allow improvements to the deuteron model and

precise cross sections in the same kinematic region as the current experiment.

In addition to extracting RA−RD, RA−RC was also extracted, shown in Fig. 70.

The model for RC was obtained from the current fit to the data as described in

Section 3.6. No nuclear dependence of RA−RC was found over the range of W 2 and

in the four Q2 bins for aluminum, iron and copper.
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Figure 68: The results for RA−RD are plotted versus W 2 for two Q2 bins. Top two
plots are for carbon, and bottom two are for aluminum.
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Figure 69: The results for RA−RD are plotted versus W 2 for two Q2 bins. Top plot
is for iron, and bottom one is for copper.

4.4 Rosenbluth Separated R

Once the cross section model has converged, the final cross section can be extracted

and used to perform Rosenbluth separation using the following formula

d2σA
dΩdE ′

/
Γ = (σT + εσL) (4.105)

where Γ is the flux of virtual photons and is given by Eq. 1.13. In order to perform a

Rosenbluth separation using the Eq. 4.105 it is necessary to measure cross sections at

the same values of W 2 and Q2 but at different values of ε. In this analysis the cross
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sections are calculated at fixed W 2 bins, as described in Section 3.4.9, where for each

W 2 there are several values of Q2 corresponding to different ε’s. In order to reduce

systematic uncertainties of R, each Rosenbluth separation was performed when there

were more then three points with an ε range larger than 0.3, one of the ε points must

be greater or smaller than 0.5 and all points were within ∆Q2 < 0.5 GeV2 range. The

average ε range for all Rosenbluth separations is 0.5±0.1. The model cross section

obtained after the iteration procedure was used to interpolate all cross sections within

the ∆Q2 < 0.5 range into an average value of Q2. In order to avoid having correlated

errors no data point was used twice in the Rosenbluth separation. The value of χ2 per

degree of freedom is about 1 indicating that point-to-point systematic uncertainties

are taken into account correctly. A few Rosenbluth separations are shown in Fig. 71.

Rosenbluth separations were performed for carbon, aluminum iron and copper.

The Coulomb field of these nuclei are not negligible and a correction is necessary to

take into account its effect. This is very important for Rosenbluth separation since

the Coulomb correction is ε (beam energy) dependent and can change the value of R

dramatically.

Another source of systematic uncertainty is the ε dependence of radiative correc-

tions. Although the radiative corrections for inclusive electron-nuclei are well under-

stood, at the level of ∼ 1%, it is still possible to have a systematic error in R if the

correction is large. In this experiment the maximum radiative correction was about

30%. In order to study the effect of radiative corrections, an artificial ε dependence is

introduced to cross sections during the Rosenbluth separation and then the separated

Rs are compared to the Rs separated without the artificial ε dependence. The size

of this artificial ε dependence is set to be within ± 1% range. A systematic uncer-
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Figure 71: Some examples of Rosenbluth separated R for aluminum. The horizontal
axis, ε, is the relative polarization of longitudinal photons. The vertical axis is the
reduced cross section defined in the left side of Eq. 4.105. The intercept of the linear
fit with the y axis defines σT , while the slope defines σL. R is the ratio σL/σT . For
each Rosenbluth separation the beam energy, electron scattering angle, Q2 and ε are
given in the legend.
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Figure 72: Rosenbluth separated R of carbon as a function of W 2 at four different
Q2 ranges. In order to take into account the Q2 dependence of R for each range, the
model obtained from the global fit is used to move Rs to an average Q2 shown in the
plot.
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Figure 73: Rosenbluth separated R of aluminum as a function of W 2 at four different
Q2 ranges. In order to take into account the Q2 dependence of R for each range, the
model obtained from the global fit is used to move Rs to an average Q2 shown in the
plot.
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shown in the plot.
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tainty of ∆R = 0.028 is found and is assigned to all values of R attributed to the ε

dependence of the radiative corrections.

The Rosenbluth separated R for carbon, aluminum, iron and copper are shown

as a function of W 2 over the resonance region in Figs. 72, 73 and 74 respectively.

Each figure has four plots indicating four Q2 ranges from top to bottom respectively:

0.5−1.0 GeV2, 1.0−2.5 GeV2, 2.5−3.5 GeV2 and 3.5−4.5 GeV2. For each Q2 range

the R is interpolated, using models of R, to the average Q2 value shown on top of each

plot. The lines shown on all plots correspond to different models for R. The red line

(Resonance new) indicates the model obtained after iterating the cross section model.

The blue line is the initial model used to extract the cross sections. The green line is

the DIS R fit “R1998” [25] and is based on a fit to world R measurements. In general

all three models agree with the data, except for the lowest Q2 case. At lowest Q2 =

0.9 GeV2 the agreement is better with the “Resonance new” model, which is natural,

since this model is based on the first cross section measurements done in the nucleon

resonance region, but it still needs improvement. This improvement will be done

when the low Q2 data of E02-109 [18] is available to include in the iterative procedure

discussed in Sec. 3.6. At Q2 = 2.0 GeV2 for carbon and aluminum the agreement

between data and DIS model for W 2 < 3 is lacking. This, again, may be caused by not

having the low Q2 data of the E02-109 in the iterative procedure. For iron at Q2 =

2.0 GeV2 the data have larger uncertainties and it is impossible to make a definite

observation about the agreement of data and models. This is further complicated by

the fact that the difference between the different models is not significant. At Q2 =

3.0 and 3.7 GeV2 for carbon, aluminum and copper the agreement of the data and

models is good within the statistical errors and the difference between the models
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decreases with increasing Q2.

4.5 F2 Structure Function and Duality in Nuclei

The extraction of the F2 structure function from cross section data can only be

accomplished with some input for the ratio R of the longitudinal to transverse cross

sections. In order to perform a model-independent extraction of the unpolarized

structure function F2 from inclusive cross section data, R is obtained by performing a

Rosenbluth separation, described earlier. The Rosenbluth separated RA still contains

some model dependence since the RA = RD + Ffit where RD is known from a model

and Ffit is found by fitting RA − RD at two Q2 bins as shown in Figures 68 and 69.

However, it should be noted that the model of RD is based on a fit of Rosenbluth

separated data [75].

After extracting RA one can calculate FA
2 using

FA
2 =

σ

σMott

νε
1 +R

1 + εR
. (4.106)

The results of extracted FA
2 are shown in Figs. 75, 76, 77 and 78 for carbon, aluminum,

iron and copper respectively. In the top plot the FA
2 structure function is shown versus

the Bjorken x variable, in the second plot, it is shown versus the Nachtmann variable

ξ defined in Eq. 1.35. The curves shown on the bottom plots of Figs. 75, 76, 77

and 78 are the proton F2 based on different parametrizations and are corrected for

the nuclear EMC effect. The parametrization ALLM97 [110] is F2 of the proton in

the DIS region. It rests on a Regge motivated approach, similar to that used earlier

by Donnachie and Landshoff [111], extended into a large Q2 regime in a way that

is compatible with QCD expectations. The parametrization of SLAC data is based
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on the old SLAC structure functions and authored by Bodek and Atwood. The

parametrization GJR08 [112] stems from the dynamical parton distributions of the

nucleon.

In the top plot of Fig. 75 (carbon) and Fig. 76 (aluminum), scaling in Bjorken x

is not observed for the most part. This is expected since the F2 set includes values

at momentum transfers ranging from Q2=0.5 GeV2 at low x to Q2=4.5 GeV2 at the

higher x values. In addition the quasi-elastic peak and resonances are not completely

washed out by the Fermi motion of the nucleons inside the nucleus. The scaling

is violated the most at x = 1, which corresponds to the quasi-elastic peak. For

aluminum and carbon the Fermi momentum is lower than for heavier targets and

the quasi-elastic peak is not broadened enough to show scaling. In the bottom plot

of Fig. 75 and Fig. 76 F2 is plotted versus the Nachtmann variable ξ, which takes

account the finite target mass, and seems to become independent of Q2. Note that

the F2 of iron, shown in Fig. 77, has a Q2 range of 0.5-3.0 GeV2 in contrast to both

carbon and aluminum where the is 0.5-4.5 GeV2. Even though Fermi momentum of

iron is larger than that of carbon and aluminum the F2 scaling in Bjorken x is still

not observed (top plot). In the bottom plot, where F2 is plotted versus Nachtmann ξ,

the situation is completely different and scaling is observed. The quasi-elastic peak is

not visible. This is an important observation, since it shows that Fermi momentum

of iron is enough to remove Q2 dependence of F2 structure function near the quasi-

elastic peak even at Q2 values around 1 GeV2. In Fig. 78 F2 is shown for copper

in the Q2 range between 1.3-4.3 GeV2 higher than that for other targets. As it can

be seen from the figure that F2 scales versus both Bjorken x and Nachtmann ξ. For

copper it can be concluded that smearing effect of Fermi motion on the resonances
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combined with high enough Q2 (> 1.5 GeV2), scaling of F2 is achieved even without

applying target mass corrections.

For nuclei heavier than iron even the quasi-elastic peak is washed out by the

Fermi smearing at higher Q2, and scaling is seen at all values of x and ξ. Here

the resonance region is essentially indistinguishable from the DIS scaling regime. The

observed scaling is consistent with the duality arguments discussed in Sec. 1.37. There

local averaging of the structure function over ξ for the nucleon resonances seen at low

Q2 and quasi-elastic peak, produces structure function consistent with the high Q2

scaling limit of structure function. Here we see indications that the Fermi motion of

the nucleons in the nucleus are performing local averaging and there is no need to

use the finite energy sum rule in order to quantify the similarity of scaling functions

in resonance and deep inelastic regimes.

Qualitatively, the nuclear effects in the resonance region appear to be similar to

those in the deep inelastic region. This is surprising since the nuclear dependence of

the scaling structure functions is not expected to be the same as the nuclear depen-

dence of resonance production. There is a priori no reason why these modifications

would be the same as those for structure functions measured in deep inelastic scatter-

ing. On the other hand, this may be viewed as another consequence of quark-hadron

duality.

The extracted F2 structure functions (per nucleon) are similar for all nuclear

targets as it can be seen in Fig. 79. Figure 79 shows the structure function for

carbon, aluminum, iron and copper at ξ =0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. The dashed

lines indicate fixed values of Nachtmann ξ. The kinematic coverage for the iron and

copper targets is less than for carbon and aluminum. For iron Q2 ranges from 0.5-2.5
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Figure 75: Top plot: Structure function per nucleon versus Bjorken x for carbon
(per nucleon) from the present measurement. Bottom plot: The νW2 = F2 structure
function for carbon (per nucleon) as a function of Nachtmann ξ. The Q2 ranges are
given at each θ angle. The curves are the proton F2 parametrizations at Q2 = 10
GeV2, corrected for the nuclear EMC effect. Arrows on the right side (ξ ∼ 0.8) of
the bottom plot indicate positions of quasi-elastic peaks.
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Figure 76: Top plot: Structure function per nucleon versus Bjorken x for aluminum
(per nucleon) from the present measurement. Bottom plot: The νW2 = F2 structure
function for aluminum (per nucleon) as a function of Nachtmann ξ. The Q2 ranges
are given at each θ angle. The curves are the proton F2 parametrizations at Q2 =
10 GeV2, corrected for the nuclear EMC effect. Arrows on the right side (ξ ∼ 0.8) of
the bottom plot indicate positions of quasi-elastic peaks.



170

x
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/A 2
 Wν

-210

-110

 = 0.65-0.872 = 12, Qθ

 = 0.23-0.312 = 15, Qθ
 = 1.47-1.952 = 18, Qθ
 = 0.72-1.172 = 22, Qθ

 = 1.80-3.182 = 23, Qθ
 = 0.56-0.982 = 25, Qθ
 = 1.45-2.252 = 33, Qθ

 = 0.82-1.642 = 35, Qθ
 = 1.87-3.052 = 43, Qθ

 = 0.53-3.072 = 45, Qθ
 = 0.90-2.982 = 60, Qθ
 = 1.34-2.712 = 75, Qθ

ξ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

/A 2
 Wν

-210

-110

F2ALLM

SLAC

GJR08

Figure 77: Top plot: Structure function per nucleon versus Bjorken x for iron (per
nucleon) from the present measurement. Bottom plot: The νW2 = F2 structure
function for iron (per nucleon) as a function of Nachtmann ξ. The Q2 ranges are
given at each θ angle. The curves are the proton F2 parametrizations at Q2 = 10
GeV2, corrected for the nuclear EMC effect. Arrows on the right side (ξ ∼ 0.8) of
the bottom plot indicate positions of quasi-elastic peak.
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Figure 78: Top plot: Structure function per nucleon versus Bjorken x for copper
(per nucleon) from the present measurement. Bottom plot: The νW2 = F2 structure
function for copper (per nucleon) as a function of Nachtmann ξ. The Q2 ranges are
given at each θ angle. The curves are the proton F2 parametrizations at Q2 = 10
GeV2, corrected for the nuclear EMC effect. The arrow on the right side (ξ ∼ 0.85)
of the bottom plot indicate the position of quasi-elastic peak.
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Figure 79: Structure function per nucleon for C, Al, Fe and Cu as a function of Q2

at fixed values of Nachtmann variable ξ. The dashed line serves only to guide the
eye.

GeV2, for copper from 2.5-4.5 GeV2. At values of ξ corresponding to the top of the

quasi-elastic peak, the structure function decreases slightly with A, as the increased

Fermi momentum broadens and lowers the peak. At lower values of ξ, far away from

the quasi-elastic peak, the structure function per nucleon is nearly identical for all of

the nuclei.

In Fig. 2 world data on the structure function F2 of the proton versus Q2 is shown

at several values of x. In Fig. 79 a similar plot is depicted for nuclear FA
2 structure

function in a limited Q2 range. Overall the two plots follow the same pattern, at small

ξ (x) FA
2 (F p

2 ) rises while at high ξ (x) decreases. As it is described in Sec. 1.1.1, this

behavior is consistent with the QCD predictions indicating scaling violations. In the
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FA
2 structure function at higher ξ and in a much smaller range of Q2 (compared to

F2 of proton) observed scaling violation is significant and can not be considered as

logarithmic in Q2. Higher values of ξ are near the quasi-elastic peak meaning higher

twist contributions are large and the observed violation should have 1/(Q2)n (power

correction) dependence.

4.6 Structure Functions and Duality Studies

The Rosenbluth separation allows the extraction of σL and σT independently. Then

the structure functions F2, F1, and FL can be calculated using the knowledge of σL

and σT by the following formulas

F1 =
K

4π2α
MσT (4.107)

F2 =
K

4π2α

(
1 +

Q2

ν2

)
[σT + σL] (4.108)

where K is a kinematic variable. From the definition of F1 one can see that it is

related only to the transverse virtual photon coupling, while F2 is a combination of

both transverse and longitudinal couplings. It is useful therefore to define a purely

longitudinal structure function FL

FL =

(
1 +

Q2

ν2

)
F2 − 2xF1. (4.109)

One of the goals of this experiment was to study quark-hadron duality for the

transverse structure function F1, the longitudinal structure function FL and for F2.

In Section 4.4, where R is extracted in the resonance region and compared to R in
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DIS region, no significant difference was found in these regimes, except at the lowest

Q2 (0.9 GeV2). The similarity of R in the two kinematically distinct regions for high

enough Q2 is expected from quark-hadron duality and for the proton has been studied

extensively. The results of this experiment allow a similar comparison to be made

in the resonance region for heavy nuclei. Studying quark-hadron duality in nuclear

targets can provide information on what role the nuclear effects have.

The results of structure functions F1, FL and F2 are presented below and compared

to models of the structure functions in DIS region. The 2xF1 and FL are plotted as

a function of x at different Q2 to provide a direct comparisons of the resonance

transverse and longitudinal structure functions to those in the DIS region, and are

seen in Figs. 80−88. In all plots the resonance structure is not visible because of

averaging effect of Fermi motion of nucleons inside nuclei. The red curve shown in

the plots is calculated from the fit to current model, the blue curve is calculated

from MRST (NNLO) fit [113], without target mass corrections. The green curve is

calculated from the MRST (NNLO) fit [113] with target mass corrections. In MRST

(NNLO) fit [113] the parton distributions are determined by a global analysis of a wide

range of deep inelastic and related hard scattering data. The Bjorken x dependence

of the distributions are parametrized at some low momentum scale, and a fixed order

(either LO or NLO or NNLO) DGLAP [33, 34, 35] evolution performed to specify

the distributions at the higher momentum scales where data exist. The target mass

correction is done (calculated based on prescription of Georgi and Politzer [48]) using

a program provided by M.E. Christy [114]. The MRST and MRST (NNLO) are also

corrected for EMC effect, and isospin weighting (see below) and nucleon structure
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functions from Ref. [115]. The isospin correction is given as

Cis = (Z + (A− Z)(F n
2 /F

p
2 ))

/
A (4.110)

and multiplies the structure functions of the proton.

The comparison of the DIS data at high Q2 to resonance data at low Q2 values

follows the original idea of Bloom and Gilman, discussed in Sec. 1.3.1. Bloom and

Gilman compared low Q2 resonance data to high Q2 DIS data and argued that the

observed similarity between the two structure functions indicates that resonances are

not a separate entity but are an intrinsic part of the scaling behavior of νW2(ν,Q2)

structure function [41]. The shortcoming of this approach is that the comparison is

made at different Q2 values, although at the same ξ, which is equivalent to making

the comparison at different Bjorken x and sensitive therefore to different parton dis-

tributions. In order to be more precise the comparison of DIS data should be made

at the same Q2 where the resonance data is taken. This is achieved by utilizing par-

ton distributions determined by a global analysis of a wide range of deep inelastic

and related hard scattering data, such as MRST (NNLO) fit [113] (the green curve).

Comparison of resonance region data with PDF-based global fits, DGLAP [33, 34, 35]

Q2 evolution and target mass correction allows the resonance-scaling comparison to

be made at the same values of x and Q2.

The transverse structure function 2xF1 versus Bjorken x for carbon, aluminum,

iron and copper is shown in Figs. 80, 83 and 86; the longitudinal structure function

FL versus Bjorken x is shown in Figs. 82, 85 and 88. The structure function F2 is

shown in Figs. 81, 84, 87. The structure functions are compared at four different Q2

ranges for carbon and aluminum. For iron only the two lowest Q2 ranges are shown,
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Figure 80: The purely transverse structure function 2xF1 of carbon per nucleon,
measured in the resonance region as a function of Bjorken x is compared with
MRST(NNLO) with and without target mass correction. Both curves are corrected
for the nuclear EMC effect and isospin weighting. Errors are smaller than the symbol
size.
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Figure 81: F2 structure function of carbon per nucleon, measured in the resonance
region as a function of Bjorken x is compared with MRST(NNLO) with and without
target mass correction. Both curves are corrected for the nuclear EMC effect and
isospin weighting. Errors are smaller than the symbol size.
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Figure 82: The purely longitudinal structure function FL of carbon per nucleon,
measured in the resonance region as a function of Bjorken x is compared with
MRST(NNLO) with and without target mass correction. Both curves are corrected
for the nuclear EMC effect.
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Figure 83: The purely transverse structure function 2xF1 of carbon per nucleon,
measured in the resonance region as a function of Bjorken x is compared with
MRST(NNLO) with and without target mass correction. Both curves are corrected
for the nuclear EMC effect and isospin weighting. Errors are smaller than the symbol
size.
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Figure 84: F2 structure function of aluminum per nucleon, measured in the resonance
region as a function of Bjorken x is compared with MRST(NNLO) with and without
target mass correction. Both curves are corrected for the nuclear EMC effect and
isospin weighting. Errors are smaller than the symbol size.
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Figure 85: The purely longitudinal structure function FL of aluminum per nu-
cleon, measured in the resonance region as a function of Bjorken x is compared with
MRST(NNLO) with and without target mass correction. Both curves are corrected
for the nuclear EMC effect.
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Figure 86: The purely transverse structure function 2xF1 of iron and copper per
nucleon, measured in the resonance region as a function of Bjorken x is compared with
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for the nuclear EMC effect and isospin weighting. Errors are smaller than the symbol
size.
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Figure 87: F2 structure function of iron and copper per nucleon, measured in the
resonance region as a function of Bjorken x is compared with MRST(NNLO) with
and without target mass correction. Both curves are corrected for the nuclear EMC
effect and isospin weighting. Errors are smaller than the symbol size.
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Figure 88: The purely longitudinal structure function FL of iron and copper per
nucleon, measured in the resonance region as a function of Bjorken x is compared with
MRST(NNLO) with and without target mass correction. Both curves are corrected
for the nuclear EMC effect.
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for copper only the two highest since there is no data at high Q2 for iron and at low

Q2 data for copper. The agreement of MRST (NNLO) parametrization with the data

is the poorest as can be seen in all the plots, while MRST (NNLO) with target mass

corrections does a better job at describing the data. This makes it clear that target

mass effects are required to describe the data.

These results confirm the validity of quark-hadron duality in the resonance region

in the separated transverse F1 and longitudinal structure functions FL of the nuclei

for Q2 larger than 2 GeV2 and x > 0.6. The duality is similarly observed in the F2

structure functions for Q2 larger than 2 GeV2 and x > 0.6. For Q2 larger than 2 GeV2

and x < 0.6 duality is violated up to maximum 20% in all structure functions. This

can be caused by nuclear effects.

Qualitatively, the nuclear effects in the resonance region appear to be similar

to those in the deep inelastic region. This similarity may be viewed as another

consequence of quark-hadron duality.
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Chapter 5

Summary and Conclusions

Inclusive electron-nuclear scattering cross sections were measured in the nucleon res-

onance region at 0.0 < W 2 < 4.5 GeV2 for four-momentum transfer values between

0.5 < Q2 < 4.5 GeV2. The data were taken in May-July 2007 at Jefferson Labora-

tory (Newport News, Va, USA) at scattering angles between 12◦ and 76◦ degrees on

12C, 27Al, 56Fe, 64Cu targets with electron beam energy 2.097, 3.116, 3.269, 4.074,

4.134 and 5.150 GeV. The cross sections are estimated to have about 2% systematic

uncertainties.

An empirical fit to inelastic electron-nuclei scattering has been performed which

describes available data reasonably well, within 3% to 5%, for 0.0 < W 2 < 4.5 GeV2

and 0.5 < Q2 < 5.0 GeV2. The fit is useful in the evaluation of radiative corrections

to experimental data, for extraction of spin structure functions from asymmetry mea-

surements, and for the evaluation of structure function moments.

The cross sections extracted from a deuteron target are used to study the nuclear

dependence of the structure function R. The cross section ratios of nuclear and

deuteron targets showed no nuclear dependence of R. This was further confirmed after

extracting RA − RD by performing Rosenbluth separations. No significant nuclear

dependence was found for W 2 > 2 GeV2 for all targets. The observed enhancement of

RA−RD near W 2 = 1.5 GeV2 indicates some nuclear dependence which vanishes with

increase of Q2 and with nuclear number A. A final conclusion about the origins of the

enhancement of RA − RD can only be made after final analysis of experiment E06-
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009 [69] which will provide an iterated model and precise cross sections for deuteron

in the same kinematic region as the current experiment. The results of RA − RC

indicate that there is no nuclear dependence of R for heavy nuclei.

The FA
2 structure function is extracted for all measured cross sections in a model

dependent way by interpolating RA − RD with a function and using a model for

deuteron RD. The extracted FA
2 shows that resonance structure is washed out by the

Fermi motion of nucleons in nuclei for Q2 > 1 GeV2 for nearly all targets and the

scaling regime of FA
2 versus Nachtmann ξ is reached. Since the Fermi momentum of

copper is larger than that of other nuclei and copper data are taken at Q2 > 1.5 GeV2

scaling is observed even versus Bjorken x. These results suggest that Fermi motion

of nucleons inside nuclei are doing the local averaging of the structure function F2

over ξ for the nuclear resonances and produces a structure function consistent with

the high Q2 scaling limit of the FA
2 structure function.

The structure functions F2, F1, FL, and R obtained by Rosenbluth separation have

allowed us to study quark-hadron duality on nuclear targets in both the transverse

and longitudinal channels. Comparison made to target mass corrected proton MRST

(NNLO) parametrization [113] with the EMC correction and isospin weighting ap-

plied, showed a similarity between the structure functions. Qualitatively, the nuclear

effects in the resonance region appear to be similar to those in the deep inelastic

region. This may be viewed as another consequence of quark-hadron duality.
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A APPENDIX

1.1 Tables of Rosenbluth Separated R, F1, F2 and FL

W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

1.110 2.096 0.901 0.353 0.081 0.032 0.001 0.033 0.001 0.020 0.004

1.110 3.773 0.943 0.155 0.097 0.009 0.000 0.010 0.001 0.003 0.002

1.150 2.079 0.885 0.271 0.071 0.035 0.001 0.034 0.002 0.017 0.004

1.150 3.753 0.933 0.170 0.097 0.009 0.001 0.011 0.001 0.003 0.002

1.190 2.062 0.869 0.175 0.065 0.040 0.002 0.036 0.002 0.012 0.005

1.190 3.734 0.923 0.212 0.100 0.009 0.001 0.012 0.001 0.004 0.002

1.230 2.045 0.854 0.329 0.076 0.038 0.002 0.039 0.002 0.022 0.005

1.230 3.714 0.914 0.326 0.109 0.010 0.001 0.013 0.001 0.006 0.002

1.270 2.028 0.839 0.427 0.082 0.039 0.002 0.042 0.002 0.028 0.005

1.270 3.694 0.905 0.261 0.099 0.011 0.001 0.014 0.001 0.005 0.002

1.310 1.999 0.823 0.295 0.063 0.045 0.002 0.043 0.002 0.022 0.005

1.310 3.704 0.896 0.309 0.088 0.011 0.000 0.015 0.001 0.006 0.002

1.350 1.984 0.809 0.192 0.055 0.050 0.002 0.045 0.002 0.016 0.005

1.390 2.009 0.798 0.275 0.044 0.049 0.001 0.047 0.001 0.021 0.003

1.430 2.016 0.786 0.281 0.049 0.050 0.001 0.048 0.001 0.022 0.003

1.430 3.640 0.869 0.326 0.081 0.013 0.001 0.018 0.001 0.007 0.002

1.470 2.000 0.772 0.292 0.047 0.053 0.001 0.051 0.001 0.024 0.003

1.510 2.003 0.761 0.297 0.044 0.054 0.001 0.052 0.001 0.024 0.003

1.510 3.598 0.851 0.285 0.076 0.015 0.001 0.020 0.001 0.007 0.002

1.550 1.984 0.748 0.306 0.045 0.056 0.001 0.055 0.001 0.026 0.003

1.590 1.952 0.733 0.361 0.055 0.058 0.002 0.059 0.002 0.031 0.004

1.590 3.556 0.834 0.217 0.068 0.018 0.001 0.021 0.001 0.006 0.002

1.630 1.936 0.721 0.363 0.052 0.062 0.002 0.062 0.002 0.032 0.004

1.670 1.921 0.709 0.319 0.052 0.067 0.002 0.065 0.002 0.030 0.004

1.670 3.513 0.817 0.351 0.075 0.018 0.001 0.024 0.001 0.011 0.002

Table 10: Structure functions of carbon.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

1.710 1.905 0.697 0.325 0.050 0.070 0.002 0.068 0.002 0.032 0.004

1.710 3.466 0.807 0.341 0.074 0.020 0.001 0.026 0.001 0.011 0.002

1.750 1.889 0.685 0.367 0.050 0.072 0.002 0.072 0.002 0.036 0.004

1.750 3.445 0.799 0.278 0.068 0.022 0.001 0.027 0.001 0.010 0.002

1.790 1.804 0.665 0.318 0.046 0.084 0.002 0.079 0.002 0.036 0.004

1.790 3.542 0.796 0.224 0.077 0.022 0.001 0.026 0.001 0.008 0.003

1.830 1.786 0.653 0.299 0.043 0.090 0.002 0.083 0.002 0.035 0.004

1.830 3.522 0.788 0.252 0.077 0.023 0.001 0.028 0.001 0.009 0.003

1.870 1.769 0.641 0.284 0.045 0.095 0.002 0.086 0.002 0.035 0.005

1.870 3.553 0.782 0.264 0.059 0.024 0.001 0.029 0.001 0.010 0.002

1.910 1.825 0.639 0.323 0.045 0.090 0.002 0.085 0.002 0.037 0.004

1.910 3.387 0.767 0.243 0.081 0.028 0.001 0.033 0.001 0.010 0.003

1.910 3.920 0.792 0.292 0.098 0.020 0.001 0.026 0.001 0.009 0.002

1.950 1.803 0.628 0.346 0.038 0.095 0.001 0.091 0.001 0.041 0.003

1.950 3.178 0.748 0.186 0.084 0.034 0.001 0.037 0.002 0.009 0.003

1.950 3.795 0.780 0.340 0.076 0.022 0.001 0.029 0.001 0.011 0.002

1.990 1.785 0.617 0.357 0.037 0.099 0.001 0.095 0.001 0.044 0.003

1.990 3.154 0.740 0.322 0.092 0.034 0.001 0.041 0.002 0.016 0.003

1.990 3.774 0.773 0.101 0.060 0.025 0.001 0.028 0.001 0.004 0.002

2.030 1.700 0.597 0.342 0.042 0.113 0.002 0.104 0.002 0.046 0.005

2.030 3.752 0.766 0.238 0.067 0.025 0.001 0.030 0.001 0.009 0.002

2.070 1.683 0.586 0.300 0.040 0.121 0.002 0.107 0.002 0.043 0.005

2.070 3.107 0.723 0.345 0.089 0.038 0.001 0.046 0.002 0.019 0.004

2.070 3.731 0.758 0.238 0.065 0.026 0.001 0.032 0.001 0.010 0.002

2.110 1.665 0.575 0.380 0.043 0.123 0.002 0.115 0.002 0.054 0.005

2.110 3.084 0.715 0.336 0.088 0.040 0.001 0.048 0.002 0.019 0.004

2.110 3.756 0.753 0.171 0.060 0.028 0.001 0.032 0.001 0.007 0.002

2.150 1.648 0.565 0.319 0.039 0.133 0.002 0.118 0.002 0.048 0.005

2.150 3.060 0.707 0.271 0.083 0.043 0.002 0.049 0.002 0.016 0.004

2.150 3.706 0.745 0.150 0.051 0.030 0.001 0.034 0.001 0.007 0.002

Table 11: Structure functions of carbon.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

2.190 3.036 0.699 0.277 0.082 0.045 0.002 0.051 0.002 0.017 0.004

2.190 3.683 0.738 0.228 0.053 0.031 0.001 0.036 0.001 0.010 0.002

2.230 3.347 0.713 0.248 0.049 0.039 0.001 0.046 0.001 0.014 0.002

2.270 1.597 0.535 0.374 0.040 0.149 0.003 0.134 0.002 0.060 0.005

2.270 2.989 0.683 0.250 0.065 0.051 0.001 0.056 0.002 0.017 0.003

2.270 3.648 0.724 0.180 0.059 0.035 0.001 0.039 0.001 0.009 0.003

2.310 1.576 0.524 0.333 0.033 0.159 0.002 0.138 0.002 0.056 0.004

2.310 2.965 0.675 0.233 0.063 0.054 0.001 0.058 0.002 0.017 0.003

2.310 3.627 0.717 0.226 0.061 0.036 0.001 0.042 0.001 0.012 0.003

2.350 1.571 0.517 0.370 0.030 0.162 0.002 0.144 0.002 0.062 0.004

2.350 2.942 0.667 0.315 0.067 0.055 0.001 0.063 0.002 0.023 0.003

2.350 3.650 0.713 0.347 0.079 0.034 0.001 0.044 0.002 0.017 0.003

2.390 1.632 0.520 0.422 0.038 0.152 0.003 0.142 0.002 0.067 0.005

2.390 2.918 0.659 0.241 0.063 0.059 0.001 0.063 0.002 0.019 0.003

2.390 3.627 0.706 0.232 0.071 0.038 0.001 0.045 0.002 0.013 0.003

2.430 1.617 0.511 0.413 0.038 0.160 0.003 0.148 0.003 0.068 0.005

2.430 2.894 0.651 0.277 0.061 0.062 0.001 0.068 0.002 0.022 0.003

2.470 0.987 0.383 0.318 0.043 0.323 0.007 0.214 0.005 0.079 0.010

2.470 1.601 0.502 0.345 0.034 0.174 0.003 0.151 0.003 0.060 0.005

2.470 2.832 0.641 0.266 0.069 0.067 0.002 0.072 0.002 0.023 0.004

2.470 3.453 0.685 0.228 0.080 0.045 0.002 0.051 0.002 0.014 0.004

2.510 0.974 0.374 0.443 0.047 0.314 0.007 0.225 0.005 0.104 0.009

2.510 1.609 0.497 0.364 0.033 0.176 0.003 0.154 0.003 0.063 0.005

2.510 3.430 0.678 0.284 0.082 0.046 0.002 0.055 0.002 0.018 0.004

2.550 1.008 0.377 0.481 0.047 0.302 0.007 0.225 0.005 0.109 0.009

2.550 1.594 0.488 0.359 0.033 0.182 0.003 0.158 0.003 0.064 0.005

2.550 2.824 0.628 0.208 0.056 0.074 0.002 0.075 0.002 0.019 0.003

2.590 0.956 0.359 0.486 0.042 0.324 0.007 0.234 0.004 0.113 0.008

2.590 2.764 0.618 0.188 0.059 0.080 0.002 0.079 0.002 0.018 0.004

2.630 0.944 0.351 0.466 0.039 0.338 0.006 0.238 0.004 0.110 0.008

Table 12: Structure functions of carbon.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

2.630 1.538 0.468 0.395 0.037 0.198 0.003 0.172 0.003 0.073 0.005

2.630 3.098 0.639 0.286 0.055 0.062 0.001 0.070 0.002 0.023 0.003

2.670 1.000 0.359 0.430 0.038 0.332 0.006 0.234 0.004 0.102 0.008

2.670 3.076 0.632 0.183 0.048 0.069 0.001 0.070 0.002 0.016 0.003

2.710 0.921 0.335 0.494 0.038 0.356 0.006 0.249 0.004 0.118 0.007

2.710 2.337 0.561 0.234 0.048 0.116 0.003 0.109 0.003 0.030 0.006

2.710 3.054 0.625 0.271 0.051 0.069 0.001 0.076 0.002 0.023 0.003

2.750 0.909 0.327 0.431 0.034 0.378 0.006 0.250 0.004 0.107 0.007

2.750 2.500 0.572 0.285 0.056 0.101 0.002 0.102 0.003 0.033 0.005

2.750 3.032 0.618 0.163 0.045 0.076 0.001 0.076 0.002 0.015 0.003

2.790 0.881 0.316 0.498 0.034 0.383 0.006 0.259 0.004 0.120 0.006

2.790 2.479 0.565 0.257 0.053 0.108 0.002 0.106 0.003 0.031 0.005

2.790 3.009 0.612 0.155 0.045 0.078 0.001 0.077 0.002 0.015 0.003

2.830 0.925 0.322 0.492 0.051 0.374 0.009 0.257 0.006 0.118 0.010

2.830 2.459 0.558 0.290 0.053 0.113 0.003 0.112 0.003 0.036 0.005

2.870 0.882 0.307 0.467 0.049 0.400 0.010 0.262 0.006 0.115 0.010

2.870 2.438 0.551 0.317 0.054 0.114 0.003 0.115 0.003 0.040 0.005

2.910 0.870 0.300 0.521 0.050 0.399 0.009 0.267 0.006 0.125 0.010

2.910 2.418 0.544 0.298 0.051 0.120 0.003 0.119 0.003 0.039 0.005

2.950 0.850 0.291 0.483 0.044 0.418 0.009 0.268 0.006 0.118 0.009

2.950 2.397 0.537 0.297 0.051 0.124 0.003 0.122 0.003 0.040 0.005

2.990 0.839 0.284 0.501 0.044 0.427 0.009 0.272 0.006 0.121 0.009

2.990 2.376 0.530 0.299 0.051 0.128 0.003 0.125 0.003 0.041 0.005

3.030 0.807 0.273 0.516 0.035 0.447 0.007 0.279 0.004 0.126 0.007

3.030 1.781 0.453 0.299 0.068 0.209 0.007 0.175 0.006 0.057 0.010

3.030 2.424 0.530 0.253 0.047 0.129 0.003 0.122 0.003 0.035 0.005

3.030 2.957 0.579 0.143 0.052 0.098 0.003 0.093 0.003 0.016 0.006

3.030 3.584 0.625 0.164 0.075 0.065 0.002 0.069 0.002 0.013 0.004

3.070 0.815 0.271 0.613 0.043 0.424 0.008 0.281 0.005 0.141 0.008

3.070 1.765 0.446 0.221 0.062 0.223 0.007 0.174 0.006 0.044 0.010

Table 13: Structure functions of carbon.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

3.070 2.378 0.521 0.315 0.046 0.133 0.002 0.130 0.002 0.044 0.004

3.070 2.937 0.573 0.235 0.057 0.096 0.003 0.097 0.003 0.026 0.006

3.110 0.813 0.267 0.461 0.025 0.466 0.005 0.278 0.003 0.115 0.005

3.110 1.749 0.440 0.220 0.061 0.229 0.007 0.177 0.006 0.044 0.010

3.110 2.355 0.514 0.332 0.046 0.138 0.002 0.135 0.002 0.047 0.004

3.110 3.642 0.620 0.300 0.088 0.062 0.002 0.073 0.003 0.023 0.004

3.150 0.786 0.257 0.607 0.038 0.453 0.008 0.289 0.004 0.141 0.007

3.150 1.741 0.434 0.228 0.058 0.233 0.006 0.180 0.006 0.046 0.009

3.150 2.356 0.509 0.257 0.046 0.144 0.003 0.133 0.003 0.038 0.005

3.150 3.618 0.614 0.268 0.084 0.065 0.002 0.074 0.003 0.022 0.004

3.190 0.761 0.248 0.508 0.036 0.494 0.008 0.287 0.004 0.124 0.007

3.190 1.593 0.408 0.319 0.063 0.260 0.007 0.204 0.006 0.068 0.010

3.190 2.370 0.507 0.256 0.038 0.147 0.002 0.135 0.002 0.038 0.003

3.190 3.021 0.567 0.175 0.047 0.100 0.002 0.097 0.003 0.020 0.004

3.190 3.614 0.610 0.157 0.073 0.071 0.002 0.073 0.002 0.014 0.004

3.230 0.751 0.242 0.591 0.038 0.483 0.008 0.292 0.004 0.138 0.007

3.230 2.346 0.500 0.206 0.035 0.155 0.002 0.136 0.002 0.032 0.003

3.230 2.999 0.561 0.156 0.045 0.106 0.002 0.101 0.003 0.019 0.005

3.230 3.658 0.609 0.211 0.067 0.068 0.002 0.074 0.002 0.017 0.004

3.270 0.715 0.230 0.579 0.030 0.510 0.006 0.294 0.003 0.136 0.005

3.270 1.686 0.414 0.323 0.065 0.244 0.007 0.197 0.006 0.065 0.010

3.270 2.977 0.555 0.135 0.044 0.110 0.002 0.101 0.003 0.016 0.005

3.270 3.633 0.603 0.223 0.074 0.071 0.002 0.077 0.002 0.019 0.004

3.310 0.732 0.232 0.543 0.033 0.513 0.007 0.291 0.004 0.129 0.006

3.310 1.670 0.407 0.268 0.060 0.261 0.007 0.200 0.006 0.057 0.010

3.310 2.266 0.482 0.342 0.046 0.163 0.003 0.155 0.003 0.054 0.005

3.310 2.974 0.550 0.191 0.060 0.109 0.003 0.105 0.004 0.023 0.006

3.310 3.609 0.598 0.149 0.069 0.075 0.002 0.077 0.002 0.013 0.004

3.350 1.654 0.401 0.253 0.058 0.269 0.007 0.202 0.006 0.055 0.010

3.350 3.015 0.550 0.247 0.063 0.105 0.003 0.107 0.004 0.029 0.006

Table 14: Structure functions of carbon.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

3.350 3.589 0.592 0.249 0.080 0.075 0.002 0.083 0.003 0.022 0.005

3.390 2.220 0.469 0.254 0.039 0.178 0.003 0.155 0.003 0.042 0.004

3.390 2.792 0.527 0.139 0.048 0.131 0.003 0.117 0.004 0.019 0.006

3.390 3.330 0.570 0.248 0.079 0.088 0.003 0.094 0.003 0.025 0.005

3.430 2.198 0.463 0.251 0.039 0.186 0.003 0.160 0.003 0.043 0.005

3.430 2.712 0.515 0.156 0.053 0.139 0.004 0.123 0.004 0.022 0.007

3.470 2.175 0.456 0.274 0.038 0.189 0.003 0.164 0.003 0.047 0.004

3.470 3.247 0.556 0.282 0.088 0.097 0.003 0.104 0.004 0.031 0.006

3.510 1.591 0.377 0.285 0.056 0.296 0.007 0.218 0.006 0.064 0.010

3.510 2.153 0.450 0.296 0.040 0.194 0.003 0.170 0.003 0.052 0.005

3.510 2.927 0.527 0.299 0.070 0.117 0.004 0.120 0.004 0.037 0.007

3.510 3.495 0.571 0.254 0.076 0.085 0.002 0.092 0.003 0.025 0.005

3.550 1.575 0.371 0.352 0.059 0.294 0.007 0.226 0.006 0.077 0.010

3.550 2.130 0.444 0.295 0.040 0.199 0.003 0.173 0.003 0.052 0.005

3.550 2.861 0.517 0.298 0.067 0.124 0.004 0.126 0.004 0.038 0.007

3.550 3.471 0.565 0.254 0.075 0.089 0.002 0.095 0.003 0.026 0.005

3.590 1.719 0.388 0.271 0.055 0.272 0.006 0.205 0.005 0.057 0.009

3.630 1.618 0.370 0.302 0.053 0.294 0.006 0.219 0.005 0.066 0.008

3.630 2.296 0.455 0.256 0.043 0.186 0.004 0.162 0.004 0.043 0.006

3.670 2.234 0.445 0.228 0.035 0.203 0.003 0.169 0.003 0.041 0.005

3.710 2.157 0.433 0.198 0.034 0.221 0.003 0.175 0.003 0.038 0.005

3.710 2.804 0.498 0.193 0.053 0.146 0.003 0.132 0.004 0.028 0.006

3.710 3.441 0.549 0.200 0.054 0.100 0.002 0.101 0.003 0.022 0.004

3.750 2.158 0.429 0.252 0.066 0.211 0.005 0.174 0.005 0.046 0.007

3.750 2.760 0.490 0.173 0.056 0.153 0.004 0.134 0.004 0.026 0.007

3.790 2.137 0.423 0.244 0.066 0.216 0.005 0.175 0.005 0.045 0.008

3.790 2.739 0.485 0.268 0.060 0.152 0.004 0.143 0.004 0.039 0.007

3.790 3.394 0.538 0.263 0.059 0.104 0.003 0.108 0.003 0.029 0.005

3.830 1.972 0.401 0.251 0.062 0.249 0.005 0.194 0.004 0.050 0.006

3.830 2.663 0.475 0.316 0.061 0.158 0.004 0.152 0.004 0.047 0.007

Table 15: Structure functions of carbon.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

3.870 2.094 0.412 0.360 0.070 0.227 0.005 0.198 0.005 0.067 0.008

3.870 2.666 0.471 0.189 0.047 0.171 0.004 0.148 0.004 0.030 0.006

3.910 2.073 0.406 0.289 0.066 0.239 0.006 0.196 0.005 0.056 0.008

3.910 2.646 0.466 0.285 0.051 0.166 0.004 0.155 0.004 0.044 0.006

3.950 2.284 0.427 0.260 0.071 0.215 0.008 0.180 0.007 0.048 0.011

3.950 2.988 0.493 0.310 0.052 0.137 0.003 0.138 0.003 0.042 0.004

3.990 2.298 0.425 0.265 0.078 0.218 0.008 0.183 0.008 0.049 0.012

3.990 2.935 0.486 0.269 0.055 0.146 0.003 0.140 0.003 0.038 0.005

4.030 2.617 0.454 0.179 0.051 0.187 0.004 0.156 0.004 0.030 0.007

4.030 3.322 0.513 0.257 0.063 0.121 0.003 0.122 0.003 0.032 0.005

4.070 2.597 0.449 0.218 0.053 0.187 0.004 0.161 0.004 0.037 0.007

4.070 3.295 0.508 0.242 0.055 0.127 0.002 0.126 0.003 0.031 0.004

4.110 2.491 0.435 0.210 0.065 0.206 0.006 0.171 0.006 0.038 0.009

4.110 2.903 0.473 0.190 0.051 0.163 0.003 0.144 0.003 0.029 0.005

4.150 2.934 0.473 0.267 0.054 0.157 0.003 0.148 0.004 0.040 0.006

4.190 2.911 0.468 0.309 0.056 0.158 0.003 0.153 0.004 0.046 0.006

4.230 2.889 0.463 0.264 0.053 0.167 0.003 0.155 0.004 0.041 0.006

Table 16: Structure functions of carbon.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

1.110 2.096 0.901 0.395 0.101 0.030 0.002 0.031 0.002 0.021 0.005

1.110 3.733 0.942 0.274 0.137 0.008 0.001 0.011 0.001 0.004 0.002

1.150 2.079 0.885 0.354 0.091 0.032 0.002 0.033 0.002 0.020 0.005

1.150 3.714 0.932 0.272 0.133 0.009 0.001 0.012 0.001 0.005 0.002

1.190 2.062 0.869 0.313 0.087 0.035 0.002 0.035 0.002 0.019 0.005

1.190 3.695 0.923 0.290 0.131 0.009 0.001 0.012 0.001 0.005 0.002

1.230 2.045 0.854 0.308 0.083 0.038 0.002 0.038 0.002 0.020 0.005

1.270 2.028 0.839 0.266 0.077 0.041 0.002 0.039 0.002 0.018 0.005

1.310 1.999 0.823 0.400 0.080 0.040 0.002 0.043 0.002 0.027 0.005

1.310 3.691 0.896 0.386 0.107 0.011 0.001 0.015 0.001 0.007 0.002

1.350 1.984 0.809 0.303 0.069 0.046 0.002 0.044 0.002 0.022 0.005

1.350 3.671 0.887 0.373 0.106 0.011 0.001 0.015 0.001 0.007 0.002

1.390 2.009 0.798 0.278 0.046 0.047 0.001 0.046 0.001 0.021 0.003

1.390 3.649 0.877 0.344 0.098 0.012 0.001 0.017 0.001 0.007 0.002

1.430 2.016 0.786 0.299 0.052 0.048 0.001 0.047 0.001 0.023 0.003

1.430 3.628 0.868 0.257 0.091 0.013 0.001 0.017 0.001 0.006 0.002

1.470 2.000 0.772 0.214 0.048 0.053 0.001 0.049 0.001 0.018 0.004

1.470 3.607 0.859 0.318 0.094 0.014 0.001 0.018 0.001 0.008 0.002

1.510 2.003 0.761 0.266 0.044 0.054 0.001 0.051 0.001 0.022 0.003

1.510 3.585 0.851 0.276 0.086 0.015 0.001 0.020 0.001 0.007 0.002

1.550 1.984 0.748 0.243 0.041 0.057 0.001 0.053 0.001 0.021 0.003

1.550 3.564 0.842 0.326 0.090 0.016 0.001 0.021 0.001 0.009 0.002

1.590 1.952 0.733 0.226 0.051 0.063 0.002 0.057 0.002 0.021 0.005

1.590 3.542 0.833 0.295 0.085 0.017 0.001 0.022 0.001 0.008 0.002

1.630 1.936 0.721 0.230 0.050 0.066 0.002 0.060 0.002 0.022 0.004

1.630 3.521 0.825 0.313 0.084 0.018 0.001 0.023 0.001 0.009 0.002

1.670 1.921 0.709 0.271 0.051 0.068 0.002 0.064 0.002 0.026 0.004

1.670 3.500 0.816 0.465 0.097 0.017 0.001 0.025 0.001 0.013 0.002

1.710 1.905 0.697 0.193 0.047 0.074 0.002 0.065 0.002 0.020 0.005

1.710 3.444 0.806 0.335 0.080 0.020 0.001 0.026 0.001 0.011 0.002

1.750 1.889 0.685 0.310 0.050 0.073 0.002 0.070 0.002 0.031 0.004

Table 17: Structure functions of aluminum.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

1.750 3.424 0.798 0.305 0.076 0.022 0.001 0.027 0.001 0.011 0.002

1.790 1.804 0.665 0.232 0.046 0.087 0.002 0.077 0.002 0.027 0.005

1.790 3.509 0.794 0.355 0.092 0.021 0.001 0.028 0.001 0.012 0.003

1.830 1.786 0.653 0.287 0.046 0.090 0.002 0.082 0.002 0.034 0.004

1.830 3.488 0.786 0.345 0.090 0.022 0.001 0.029 0.002 0.012 0.003

1.870 1.769 0.641 0.223 0.043 0.098 0.002 0.084 0.002 0.028 0.005

1.870 3.522 0.781 0.355 0.076 0.023 0.001 0.030 0.001 0.013 0.002

1.910 1.752 0.630 0.234 0.044 0.102 0.002 0.088 0.002 0.030 0.005

1.910 3.500 0.773 0.238 0.068 0.026 0.001 0.031 0.001 0.009 0.002

1.950 1.745 0.620 0.233 0.037 0.106 0.002 0.091 0.002 0.031 0.004

1.950 3.186 0.749 0.329 0.109 0.031 0.001 0.038 0.002 0.015 0.004

1.950 3.873 0.784 0.117 0.079 0.023 0.001 0.025 0.001 0.004 0.003

1.990 1.726 0.609 0.257 0.037 0.112 0.002 0.097 0.002 0.035 0.004

1.990 3.852 0.776 0.287 0.091 0.022 0.001 0.028 0.001 0.010 0.003

2.030 1.700 0.597 0.326 0.048 0.114 0.003 0.104 0.003 0.045 0.006

2.030 3.179 0.734 0.225 0.076 0.036 0.001 0.040 0.001 0.012 0.003

2.030 3.830 0.769 0.301 0.091 0.022 0.001 0.029 0.001 0.010 0.003

2.070 1.683 0.586 0.358 0.049 0.118 0.003 0.109 0.003 0.049 0.006

2.070 3.116 0.724 0.271 0.097 0.038 0.002 0.044 0.002 0.015 0.004

2.070 3.809 0.762 0.286 0.086 0.024 0.001 0.031 0.001 0.011 0.003

2.110 1.665 0.575 0.318 0.045 0.128 0.003 0.114 0.003 0.047 0.006

2.110 3.093 0.715 0.288 0.097 0.039 0.002 0.046 0.002 0.016 0.004

2.110 3.802 0.756 0.250 0.082 0.026 0.001 0.032 0.001 0.010 0.003

2.150 1.648 0.565 0.292 0.045 0.135 0.003 0.117 0.003 0.044 0.006

2.150 3.741 0.747 0.298 0.069 0.028 0.001 0.035 0.001 0.012 0.002

2.190 3.046 0.699 0.323 0.085 0.044 0.001 0.052 0.002 0.020 0.004

2.190 3.718 0.739 0.202 0.063 0.030 0.001 0.035 0.001 0.009 0.002

2.230 3.377 0.714 0.182 0.050 0.039 0.001 0.043 0.001 0.010 0.002

2.270 1.597 0.535 0.284 0.041 0.157 0.003 0.132 0.003 0.048 0.006

2.270 2.999 0.683 0.284 0.079 0.049 0.002 0.055 0.002 0.019 0.004

Table 18: Structure functions of aluminum.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

2.270 3.684 0.726 0.157 0.065 0.034 0.001 0.038 0.002 0.008 0.003

2.310 1.576 0.524 0.334 0.035 0.159 0.002 0.138 0.002 0.056 0.004

2.310 2.976 0.675 0.253 0.076 0.052 0.002 0.057 0.002 0.018 0.004

2.310 3.663 0.719 0.222 0.068 0.034 0.001 0.040 0.002 0.011 0.003

2.350 1.571 0.517 0.324 0.032 0.165 0.002 0.141 0.002 0.055 0.004

2.350 2.953 0.668 0.235 0.073 0.056 0.002 0.060 0.002 0.017 0.004

2.350 3.670 0.714 0.254 0.078 0.035 0.001 0.042 0.002 0.013 0.003

2.390 1.632 0.520 0.401 0.041 0.154 0.003 0.141 0.003 0.064 0.006

2.390 2.930 0.660 0.359 0.079 0.056 0.002 0.066 0.002 0.027 0.004

2.390 3.648 0.707 0.225 0.075 0.037 0.001 0.043 0.002 0.012 0.003

2.430 1.617 0.511 0.342 0.038 0.164 0.003 0.144 0.003 0.057 0.006

2.430 2.906 0.652 0.271 0.072 0.061 0.002 0.067 0.002 0.021 0.004

2.470 0.962 0.377 0.375 0.046 0.322 0.008 0.220 0.006 0.091 0.010

2.470 1.601 0.502 0.306 0.037 0.174 0.003 0.147 0.003 0.054 0.006

2.470 2.835 0.641 0.271 0.079 0.067 0.002 0.072 0.003 0.023 0.005

2.470 3.453 0.685 0.270 0.090 0.043 0.002 0.050 0.002 0.016 0.004

2.470 3.915 0.711 0.107 0.101 0.036 0.002 0.039 0.002 0.005 0.004

2.510 0.951 0.369 0.413 0.045 0.328 0.008 0.228 0.005 0.100 0.010

2.510 1.609 0.497 0.352 0.036 0.174 0.003 0.151 0.003 0.061 0.005

2.510 2.624 0.617 0.214 0.056 0.083 0.002 0.082 0.002 0.022 0.005

2.510 3.165 0.660 0.208 0.056 0.055 0.002 0.059 0.002 0.015 0.003

2.550 0.983 0.370 0.459 0.047 0.315 0.007 0.229 0.005 0.107 0.010

2.550 1.594 0.488 0.413 0.037 0.174 0.003 0.158 0.003 0.070 0.005

2.550 2.836 0.629 0.343 0.073 0.068 0.002 0.077 0.002 0.029 0.004

2.550 3.984 0.705 0.205 0.115 0.035 0.002 0.041 0.002 0.010 0.004

2.590 0.939 0.354 0.450 0.042 0.341 0.008 0.238 0.005 0.109 0.009

2.590 2.767 0.618 0.195 0.062 0.078 0.002 0.077 0.002 0.019 0.004

2.590 3.960 0.698 0.189 0.111 0.036 0.002 0.042 0.002 0.010 0.004

2.630 0.928 0.347 0.463 0.042 0.346 0.007 0.241 0.005 0.111 0.009

2.630 1.538 0.468 0.389 0.039 0.195 0.004 0.169 0.003 0.071 0.006

Table 19: Structure functions of aluminum.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

2.630 3.098 0.639 0.235 0.060 0.064 0.002 0.069 0.002 0.019 0.004

2.670 0.977 0.353 0.418 0.039 0.343 0.007 0.237 0.005 0.101 0.009

2.670 3.076 0.632 0.238 0.057 0.065 0.002 0.070 0.002 0.020 0.003

2.710 0.907 0.331 0.491 0.041 0.362 0.007 0.251 0.005 0.118 0.008

2.710 2.337 0.561 0.319 0.056 0.110 0.003 0.110 0.003 0.039 0.006

2.710 3.054 0.625 0.301 0.058 0.066 0.002 0.074 0.002 0.025 0.003

2.750 0.897 0.324 0.513 0.041 0.368 0.007 0.256 0.005 0.122 0.008

2.750 2.500 0.572 0.267 0.060 0.102 0.003 0.101 0.003 0.031 0.005

2.750 3.032 0.618 0.351 0.059 0.069 0.002 0.080 0.002 0.030 0.003

2.790 0.874 0.314 0.523 0.034 0.382 0.006 0.261 0.004 0.125 0.006

2.790 2.479 0.565 0.296 0.061 0.105 0.003 0.106 0.003 0.035 0.006

2.790 3.009 0.612 0.238 0.053 0.076 0.002 0.080 0.002 0.022 0.003

2.790 3.694 0.659 0.183 0.111 0.050 0.002 0.055 0.003 0.012 0.005

2.830 0.909 0.318 0.570 0.045 0.362 0.007 0.259 0.005 0.131 0.008

2.830 2.459 0.558 0.308 0.060 0.109 0.003 0.110 0.003 0.038 0.006

2.830 3.669 0.653 0.154 0.108 0.053 0.002 0.056 0.003 0.011 0.005

2.870 0.870 0.304 0.586 0.045 0.381 0.008 0.268 0.005 0.136 0.008

2.870 2.438 0.551 0.363 0.061 0.111 0.003 0.116 0.003 0.044 0.005

2.910 0.859 0.298 0.578 0.043 0.395 0.008 0.272 0.005 0.136 0.008

2.910 2.418 0.544 0.267 0.055 0.121 0.003 0.116 0.003 0.035 0.006

2.950 0.844 0.290 0.550 0.038 0.409 0.007 0.272 0.004 0.130 0.007

2.950 2.397 0.537 0.228 0.054 0.126 0.003 0.117 0.003 0.031 0.006

2.990 0.833 0.283 0.591 0.039 0.412 0.007 0.278 0.004 0.138 0.007

2.990 2.376 0.530 0.320 0.055 0.127 0.003 0.125 0.003 0.043 0.005

3.030 0.806 0.273 0.593 0.033 0.430 0.006 0.282 0.003 0.139 0.006

3.030 1.781 0.453 0.243 0.063 0.213 0.007 0.171 0.006 0.047 0.011

3.030 2.424 0.530 0.349 0.057 0.124 0.003 0.126 0.003 0.046 0.005

3.030 2.957 0.579 0.254 0.070 0.090 0.003 0.093 0.004 0.026 0.007

3.030 3.584 0.625 0.220 0.088 0.062 0.002 0.069 0.003 0.017 0.004

3.070 0.812 0.271 0.632 0.040 0.426 0.008 0.286 0.005 0.146 0.007

Table 20: Structure functions of aluminum.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

3.070 1.765 0.446 0.284 0.064 0.216 0.007 0.177 0.006 0.055 0.011

3.070 2.378 0.521 0.327 0.049 0.133 0.003 0.131 0.003 0.045 0.005

3.070 3.559 0.619 0.144 0.083 0.066 0.002 0.068 0.003 0.012 0.004

3.110 0.810 0.266 0.520 0.027 0.458 0.006 0.284 0.003 0.127 0.005

3.110 1.749 0.440 0.264 0.062 0.224 0.007 0.179 0.006 0.052 0.010

3.110 2.355 0.514 0.319 0.051 0.137 0.003 0.133 0.003 0.045 0.005

3.110 3.642 0.620 0.154 0.089 0.064 0.002 0.066 0.003 0.012 0.005

3.150 0.787 0.257 0.604 0.037 0.454 0.008 0.289 0.004 0.141 0.007

3.150 1.741 0.434 0.316 0.062 0.225 0.006 0.186 0.006 0.062 0.009

3.150 2.356 0.509 0.230 0.050 0.145 0.003 0.131 0.003 0.034 0.006

3.150 3.618 0.614 0.138 0.086 0.067 0.002 0.069 0.003 0.011 0.005

3.190 0.766 0.249 0.630 0.037 0.462 0.008 0.292 0.004 0.145 0.007

3.190 1.593 0.408 0.313 0.062 0.260 0.008 0.203 0.006 0.066 0.011

3.190 2.370 0.507 0.315 0.042 0.144 0.002 0.139 0.002 0.046 0.004

3.190 3.021 0.567 0.250 0.058 0.095 0.003 0.098 0.003 0.027 0.005

3.190 3.626 0.611 0.225 0.086 0.067 0.002 0.073 0.003 0.018 0.004

3.230 0.757 0.244 0.673 0.038 0.463 0.008 0.296 0.004 0.152 0.007

3.230 2.346 0.500 0.187 0.039 0.154 0.002 0.133 0.002 0.029 0.004

3.230 2.999 0.561 0.254 0.056 0.099 0.003 0.102 0.003 0.028 0.005

3.230 3.656 0.609 0.149 0.080 0.068 0.002 0.070 0.002 0.012 0.004

3.270 0.726 0.233 0.604 0.029 0.500 0.006 0.296 0.003 0.141 0.005

3.270 1.686 0.414 0.342 0.063 0.243 0.007 0.199 0.006 0.069 0.010

3.270 2.288 0.489 0.359 0.052 0.155 0.003 0.151 0.003 0.055 0.006

3.270 2.977 0.555 0.118 0.067 0.109 0.004 0.099 0.004 0.014 0.007

3.270 3.631 0.603 0.237 0.084 0.069 0.002 0.076 0.003 0.020 0.004

3.310 1.670 0.407 0.274 0.058 0.257 0.007 0.198 0.006 0.057 0.010

3.310 2.266 0.482 0.285 0.049 0.163 0.003 0.148 0.003 0.045 0.006

3.310 2.974 0.550 0.225 0.072 0.105 0.004 0.104 0.004 0.026 0.007

3.310 3.606 0.598 0.156 0.079 0.073 0.002 0.075 0.003 0.014 0.004

3.350 1.654 0.401 0.376 0.063 0.251 0.007 0.207 0.006 0.076 0.010

Table 21: Structure functions of aluminum.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

3.350 3.015 0.550 0.353 0.078 0.099 0.004 0.109 0.004 0.038 0.007

3.350 3.585 0.592 0.333 0.093 0.072 0.002 0.084 0.003 0.028 0.005

3.390 2.220 0.469 0.372 0.046 0.172 0.003 0.164 0.003 0.060 0.005

3.390 2.792 0.527 0.218 0.062 0.122 0.004 0.116 0.004 0.028 0.007

3.390 3.365 0.573 0.254 0.087 0.085 0.003 0.091 0.003 0.025 0.005

3.430 2.198 0.463 0.322 0.045 0.180 0.003 0.164 0.003 0.053 0.005

3.430 2.712 0.515 0.305 0.070 0.127 0.004 0.127 0.005 0.040 0.008

3.430 3.306 0.565 0.243 0.085 0.090 0.003 0.095 0.003 0.025 0.005

3.470 2.175 0.456 0.290 0.043 0.187 0.003 0.165 0.003 0.050 0.005

3.470 2.692 0.510 0.215 0.063 0.137 0.004 0.127 0.005 0.030 0.008

3.510 1.591 0.377 0.333 0.057 0.287 0.007 0.220 0.006 0.072 0.009

3.510 2.153 0.450 0.318 0.044 0.191 0.003 0.170 0.003 0.055 0.005

3.510 2.927 0.527 0.173 0.070 0.123 0.004 0.114 0.005 0.022 0.008

3.510 3.488 0.570 0.191 0.079 0.087 0.003 0.089 0.003 0.019 0.005

3.550 1.575 0.371 0.308 0.055 0.300 0.007 0.223 0.006 0.069 0.009

3.550 2.130 0.444 0.289 0.043 0.199 0.003 0.172 0.003 0.051 0.005

3.550 2.657 0.499 0.189 0.069 0.145 0.005 0.129 0.005 0.027 0.009

3.550 3.267 0.550 0.282 0.085 0.097 0.003 0.103 0.003 0.030 0.005

3.590 1.719 0.388 0.304 0.054 0.272 0.006 0.210 0.005 0.064 0.009

3.590 2.342 0.464 0.298 0.045 0.174 0.003 0.158 0.003 0.048 0.005

3.630 1.618 0.370 0.332 0.052 0.291 0.006 0.221 0.005 0.072 0.008

3.630 2.320 0.458 0.352 0.046 0.175 0.003 0.164 0.003 0.056 0.005

3.670 2.238 0.445 0.362 0.036 0.191 0.003 0.177 0.003 0.062 0.005

3.710 2.175 0.435 0.317 0.035 0.204 0.004 0.179 0.003 0.056 0.005

3.710 2.804 0.498 0.180 0.059 0.144 0.004 0.129 0.004 0.026 0.007

3.710 3.383 0.544 0.225 0.060 0.100 0.002 0.102 0.003 0.024 0.005

3.750 2.175 0.431 0.287 0.043 0.210 0.005 0.179 0.004 0.052 0.007

3.750 2.760 0.490 0.312 0.072 0.142 0.005 0.140 0.005 0.043 0.008

3.750 3.352 0.539 0.222 0.056 0.103 0.002 0.104 0.003 0.025 0.004

3.790 2.154 0.425 0.339 0.045 0.212 0.005 0.186 0.004 0.061 0.007

Table 22: Structure functions of aluminum.
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3.790 2.739 0.485 0.205 0.064 0.156 0.005 0.140 0.005 0.031 0.008

3.790 3.337 0.534 0.288 0.063 0.104 0.003 0.110 0.003 0.032 0.005

3.830 2.037 0.408 0.339 0.038 0.234 0.004 0.199 0.003 0.065 0.005

3.830 2.663 0.475 0.382 0.074 0.152 0.005 0.154 0.005 0.055 0.008

3.830 3.297 0.528 0.190 0.066 0.113 0.003 0.110 0.003 0.023 0.005

3.870 2.112 0.414 0.386 0.047 0.219 0.005 0.195 0.004 0.070 0.007

3.870 2.666 0.471 0.323 0.063 0.157 0.005 0.151 0.005 0.048 0.007

3.870 3.273 0.523 0.125 0.062 0.119 0.003 0.108 0.003 0.016 0.005

3.910 2.091 0.408 0.247 0.038 0.244 0.004 0.194 0.004 0.049 0.006

3.910 2.646 0.466 0.347 0.063 0.161 0.005 0.157 0.005 0.052 0.007

3.910 3.282 0.520 0.260 0.068 0.115 0.003 0.117 0.003 0.031 0.005

3.950 2.240 0.422 0.284 0.061 0.221 0.007 0.187 0.007 0.053 0.010

3.950 3.039 0.498 0.292 0.052 0.135 0.003 0.134 0.003 0.039 0.004

3.990 2.143 0.408 0.354 0.051 0.230 0.006 0.200 0.005 0.066 0.008

3.990 2.687 0.463 0.288 0.071 0.170 0.005 0.158 0.005 0.045 0.009

3.990 3.242 0.510 0.181 0.068 0.128 0.004 0.120 0.004 0.024 0.006

4.030 2.617 0.454 0.206 0.064 0.183 0.005 0.157 0.005 0.034 0.008

4.030 3.217 0.505 0.259 0.073 0.124 0.004 0.124 0.004 0.033 0.006

4.070 2.597 0.449 0.237 0.066 0.185 0.005 0.161 0.005 0.039 0.008

4.070 3.192 0.500 0.302 0.073 0.127 0.004 0.130 0.004 0.039 0.006

4.110 2.577 0.444 0.369 0.072 0.183 0.005 0.175 0.005 0.060 0.008

4.150 2.929 0.472 0.271 0.058 0.154 0.004 0.146 0.004 0.039 0.006

4.190 2.143 0.393 0.224 0.072 0.263 0.011 0.202 0.009 0.046 0.014

4.190 2.907 0.468 0.244 0.057 0.161 0.004 0.148 0.004 0.037 0.006

4.230 2.128 0.389 0.187 0.069 0.275 0.011 0.203 0.009 0.040 0.014

4.230 2.885 0.463 0.235 0.056 0.166 0.004 0.150 0.004 0.036 0.006

4.310 2.793 0.449 0.203 0.048 0.182 0.004 0.157 0.004 0.033 0.005

4.430 2.769 0.438 0.332 0.068 0.183 0.005 0.172 0.005 0.053 0.007

4.510 2.726 0.429 0.206 0.061 0.202 0.005 0.169 0.005 0.036 0.007

4.550 2.704 0.424 0.197 0.060 0.207 0.005 0.170 0.005 0.035 0.007

4.590 2.682 0.420 0.292 0.063 0.207 0.005 0.182 0.005 0.051 0.007

Table 23: Structure functions of aluminum.
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1.310 2.064 0.828 0.167 0.069 0.041 0.002 0.037 0.002 0.011 0.005

1.350 2.048 0.813 0.403 0.085 0.040 0.002 0.042 0.002 0.026 0.005

1.390 2.032 0.799 0.280 0.075 0.044 0.002 0.043 0.002 0.020 0.005

1.430 2.016 0.786 0.254 0.071 0.047 0.002 0.045 0.002 0.019 0.005

1.470 2.000 0.772 0.277 0.071 0.050 0.002 0.048 0.002 0.021 0.005

1.510 2.003 0.761 0.275 0.059 0.052 0.002 0.050 0.002 0.022 0.004

1.550 1.984 0.748 0.327 0.059 0.054 0.002 0.054 0.002 0.026 0.004

1.590 1.952 0.733 0.302 0.069 0.057 0.002 0.055 0.002 0.025 0.005

1.630 1.936 0.721 0.290 0.068 0.061 0.002 0.058 0.002 0.025 0.005

1.670 1.921 0.709 0.287 0.064 0.067 0.002 0.064 0.002 0.027 0.005

1.710 1.905 0.697 0.366 0.068 0.066 0.002 0.066 0.002 0.034 0.005

1.750 1.889 0.685 0.231 0.060 0.075 0.002 0.068 0.002 0.024 0.006

1.790 1.804 0.665 0.233 0.054 0.086 0.002 0.076 0.002 0.027 0.005

1.830 1.786 0.653 0.266 0.058 0.090 0.003 0.081 0.003 0.031 0.006

1.870 1.769 0.641 0.269 0.057 0.095 0.003 0.085 0.003 0.033 0.006

1.910 1.752 0.630 0.210 0.053 0.102 0.003 0.087 0.003 0.027 0.006

1.950 1.745 0.620 0.269 0.048 0.103 0.002 0.091 0.002 0.034 0.005

1.990 1.726 0.609 0.226 0.045 0.111 0.002 0.094 0.002 0.030 0.005

2.070 1.683 0.586 0.284 0.054 0.122 0.003 0.106 0.003 0.041 0.007

2.150 1.648 0.565 0.200 0.048 0.137 0.003 0.110 0.003 0.031 0.007

2.270 1.597 0.535 0.279 0.049 0.152 0.004 0.128 0.003 0.045 0.007

2.310 1.576 0.524 0.358 0.058 0.158 0.003 0.140 0.003 0.059 0.006

2.350 1.571 0.517 0.255 0.037 0.169 0.003 0.137 0.003 0.044 0.005

2.430 1.617 0.511 0.348 0.048 0.163 0.004 0.143 0.004 0.058 0.007

2.470 0.987 0.383 0.349 0.066 0.315 0.012 0.214 0.009 0.084 0.016

2.470 1.601 0.502 0.370 0.048 0.166 0.004 0.147 0.004 0.062 0.007

2.510 0.974 0.374 0.461 0.073 0.306 0.012 0.222 0.009 0.106 0.016

2.510 1.624 0.499 0.301 0.038 0.175 0.004 0.147 0.003 0.053 0.006

2.550 1.594 0.488 0.210 0.037 0.193 0.004 0.149 0.004 0.040 0.007

2.590 0.956 0.359 0.330 0.058 0.349 0.012 0.226 0.008 0.083 0.015

2.630 0.944 0.351 0.506 0.069 0.327 0.012 0.237 0.008 0.116 0.015

Table 24: Structure functions of iron.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

2.630 1.538 0.468 0.296 0.043 0.200 0.004 0.161 0.004 0.055 0.007

2.670 1.000 0.359 0.407 0.062 0.331 0.012 0.230 0.008 0.097 0.014

2.710 0.921 0.335 0.539 0.069 0.345 0.012 0.249 0.008 0.124 0.014

2.710 2.337 0.561 0.200 0.063 0.113 0.004 0.103 0.004 0.025 0.007

2.750 0.909 0.327 0.500 0.065 0.360 0.012 0.250 0.008 0.118 0.014

2.790 0.881 0.316 0.514 0.050 0.375 0.009 0.256 0.006 0.122 0.010

2.830 0.925 0.322 0.557 0.067 0.358 0.012 0.257 0.008 0.128 0.013

2.830 2.267 0.538 0.246 0.076 0.127 0.004 0.117 0.005 0.034 0.008

2.870 0.882 0.307 0.454 0.059 0.401 0.012 0.260 0.008 0.112 0.013

2.870 2.248 0.530 0.185 0.071 0.136 0.005 0.119 0.005 0.027 0.008

2.910 0.870 0.300 0.589 0.065 0.384 0.012 0.268 0.007 0.136 0.013

2.910 2.229 0.523 0.326 0.080 0.133 0.005 0.128 0.005 0.045 0.009

2.950 0.850 0.291 0.468 0.054 0.421 0.012 0.266 0.007 0.115 0.012

2.950 2.211 0.516 0.328 0.077 0.139 0.005 0.133 0.005 0.047 0.008

2.990 0.839 0.284 0.595 0.060 0.402 0.012 0.272 0.007 0.136 0.012

2.990 2.192 0.510 0.139 0.064 0.155 0.005 0.127 0.005 0.022 0.008

3.030 0.807 0.273 0.614 0.047 0.422 0.009 0.281 0.005 0.141 0.009

3.030 1.781 0.453 0.343 0.086 0.198 0.009 0.171 0.008 0.061 0.014

3.070 0.815 0.271 0.558 0.056 0.435 0.012 0.279 0.007 0.132 0.012

3.070 1.765 0.446 0.156 0.069 0.224 0.009 0.166 0.008 0.031 0.014

3.110 0.813 0.267 0.487 0.034 0.461 0.008 0.280 0.004 0.120 0.007

3.110 1.749 0.440 0.245 0.076 0.219 0.009 0.172 0.008 0.047 0.013

3.150 0.786 0.257 0.500 0.050 0.476 0.012 0.283 0.007 0.123 0.011

3.150 1.741 0.434 0.223 0.066 0.231 0.008 0.178 0.007 0.045 0.012

3.190 0.761 0.248 0.536 0.052 0.484 0.013 0.287 0.007 0.128 0.011

3.190 1.593 0.408 0.230 0.071 0.263 0.010 0.193 0.008 0.049 0.014

3.230 0.751 0.242 0.608 0.054 0.476 0.012 0.291 0.007 0.140 0.010

3.270 0.715 0.230 0.572 0.040 0.510 0.009 0.292 0.005 0.134 0.007

3.310 0.732 0.232 0.674 0.053 0.482 0.012 0.297 0.006 0.150 0.009

3.630 1.613 0.370 0.337 0.066 0.285 0.009 0.217 0.007 0.071 0.011

Table 25: Structure functions of iron.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

1.110 3.717 0.942 0.517 0.196 0.007 0.001 0.011 0.001 0.007 0.002

1.150 3.696 0.932 0.455 0.185 0.007 0.001 0.011 0.001 0.006 0.002

1.190 3.676 0.922 0.492 0.178 0.008 0.001 0.013 0.001 0.008 0.002

1.230 3.655 0.913 0.244 0.141 0.010 0.001 0.012 0.001 0.004 0.002

1.310 3.662 0.895 0.399 0.119 0.010 0.001 0.014 0.001 0.007 0.002

1.350 3.640 0.886 0.226 0.100 0.012 0.001 0.014 0.001 0.005 0.002

1.390 3.618 0.877 0.272 0.100 0.012 0.001 0.015 0.001 0.006 0.002

1.430 3.596 0.867 0.167 0.089 0.013 0.001 0.016 0.001 0.004 0.002

1.470 3.574 0.858 0.340 0.119 0.013 0.001 0.018 0.001 0.008 0.002

1.510 3.552 0.849 0.321 0.116 0.014 0.001 0.018 0.001 0.008 0.002

1.550 3.530 0.840 0.198 0.101 0.016 0.001 0.019 0.001 0.005 0.002

1.590 3.508 0.832 0.241 0.101 0.017 0.001 0.020 0.001 0.007 0.002

1.630 3.486 0.823 0.300 0.105 0.017 0.001 0.022 0.001 0.008 0.002

1.670 3.464 0.814 0.245 0.098 0.019 0.001 0.023 0.001 0.007 0.002

1.710 3.419 0.805 0.150 0.072 0.021 0.001 0.023 0.001 0.005 0.002

1.750 3.399 0.796 0.172 0.072 0.022 0.001 0.025 0.001 0.006 0.002

1.790 3.552 0.796 0.115 0.089 0.022 0.001 0.024 0.002 0.004 0.004

1.830 3.530 0.788 0.169 0.092 0.023 0.001 0.026 0.002 0.006 0.004

1.870 3.560 0.783 0.180 0.067 0.023 0.001 0.026 0.001 0.007 0.002

1.910 3.500 0.773 0.230 0.077 0.025 0.001 0.029 0.001 0.009 0.003

1.950 3.477 0.765 0.087 0.067 0.027 0.001 0.028 0.001 0.004 0.003

1.990 3.231 0.744 0.201 0.092 0.031 0.001 0.035 0.002 0.009 0.004

1.990 3.773 0.773 0.165 0.076 0.023 0.001 0.027 0.001 0.006 0.002

2.030 3.445 0.750 0.229 0.058 0.029 0.001 0.033 0.001 0.010 0.002

2.070 3.442 0.743 0.238 0.063 0.030 0.001 0.035 0.001 0.010 0.002

2.110 3.418 0.735 0.184 0.058 0.032 0.001 0.036 0.001 0.009 0.002

2.150 3.413 0.729 0.208 0.054 0.033 0.001 0.037 0.001 0.010 0.002

2.190 3.389 0.721 0.146 0.050 0.036 0.001 0.038 0.001 0.007 0.002

2.230 3.365 0.714 0.125 0.053 0.038 0.001 0.040 0.001 0.007 0.002

2.270 3.299 0.704 0.298 0.069 0.039 0.001 0.047 0.002 0.016 0.003

2.310 3.277 0.696 0.177 0.061 0.043 0.001 0.046 0.002 0.010 0.003

Table 26: Structure functions of copper.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

2.350 3.111 0.679 0.286 0.080 0.046 0.002 0.053 0.002 0.018 0.004

2.390 3.086 0.672 0.221 0.074 0.051 0.002 0.056 0.002 0.015 0.004

2.430 3.062 0.664 0.275 0.076 0.052 0.002 0.059 0.002 0.019 0.004

2.470 3.038 0.656 0.159 0.070 0.056 0.002 0.056 0.002 0.012 0.004

2.510 3.013 0.649 0.187 0.069 0.059 0.002 0.061 0.002 0.014 0.004

2.550 2.989 0.642 0.321 0.076 0.058 0.002 0.066 0.002 0.024 0.004

2.590 2.965 0.634 0.294 0.073 0.063 0.002 0.070 0.002 0.023 0.004

2.630 3.098 0.639 0.180 0.059 0.062 0.002 0.063 0.002 0.014 0.004

2.670 3.076 0.632 0.268 0.063 0.063 0.002 0.069 0.002 0.021 0.004

2.710 3.054 0.625 0.222 0.060 0.067 0.002 0.070 0.002 0.019 0.004

2.750 2.868 0.605 0.096 0.061 0.080 0.002 0.073 0.003 0.009 0.005

2.790 2.844 0.598 0.221 0.067 0.082 0.002 0.083 0.003 0.022 0.005

2.830 2.753 0.585 0.201 0.065 0.089 0.002 0.087 0.003 0.021 0.005

2.870 2.766 0.582 0.183 0.051 0.092 0.002 0.089 0.003 0.020 0.005

2.910 2.788 0.579 0.209 0.046 0.092 0.002 0.091 0.002 0.022 0.004

2.950 2.766 0.572 0.299 0.050 0.091 0.002 0.096 0.002 0.031 0.004

2.990 2.722 0.563 0.364 0.068 0.093 0.003 0.102 0.003 0.038 0.005

3.030 2.698 0.557 0.317 0.065 0.099 0.003 0.103 0.003 0.035 0.005

3.070 2.674 0.550 0.284 0.055 0.106 0.002 0.107 0.003 0.033 0.004

3.150 2.625 0.536 0.253 0.053 0.118 0.002 0.115 0.003 0.032 0.005

3.190 2.584 0.528 0.276 0.054 0.120 0.003 0.117 0.003 0.035 0.005

3.230 2.559 0.521 0.377 0.056 0.122 0.003 0.128 0.003 0.048 0.005

3.270 2.553 0.516 0.221 0.051 0.132 0.003 0.121 0.003 0.030 0.005

3.310 2.528 0.510 0.264 0.052 0.137 0.003 0.129 0.003 0.037 0.005

3.390 2.504 0.499 0.207 0.049 0.145 0.003 0.129 0.003 0.030 0.005

3.430 2.481 0.493 0.272 0.050 0.148 0.003 0.138 0.003 0.040 0.005

3.470 2.458 0.487 0.208 0.048 0.157 0.003 0.138 0.003 0.032 0.005

3.510 2.411 0.478 0.396 0.063 0.150 0.004 0.150 0.004 0.057 0.006

3.550 2.516 0.485 0.263 0.074 0.150 0.005 0.138 0.005 0.038 0.009

3.590 2.493 0.479 0.296 0.075 0.155 0.005 0.145 0.005 0.044 0.009

Table 27: Structure functions of copper.
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W 2 Q2 x R ∆R F1 ∆F1 F2 ∆F2 FL ∆FL

3.590 3.165 0.539 0.170 0.072 0.108 0.003 0.103 0.004 0.020 0.006

3.630 2.470 0.473 0.187 0.067 0.170 0.005 0.145 0.006 0.030 0.009

3.630 3.143 0.533 0.265 0.078 0.105 0.003 0.108 0.004 0.030 0.006

3.670 2.402 0.463 0.211 0.048 0.179 0.004 0.153 0.004 0.035 0.006

3.670 3.119 0.528 0.338 0.082 0.108 0.003 0.116 0.004 0.038 0.006

3.710 2.804 0.498 0.191 0.061 0.141 0.004 0.127 0.004 0.027 0.007

3.710 3.399 0.546 0.173 0.078 0.098 0.003 0.096 0.004 0.019 0.006

3.750 2.360 0.451 0.255 0.072 0.188 0.007 0.163 0.007 0.043 0.010

3.750 3.390 0.542 0.343 0.085 0.096 0.003 0.107 0.003 0.036 0.005

3.790 2.337 0.445 0.354 0.078 0.187 0.007 0.174 0.007 0.059 0.010

3.790 3.390 0.538 0.324 0.095 0.099 0.004 0.108 0.004 0.034 0.007

3.830 2.314 0.440 0.228 0.071 0.202 0.007 0.169 0.007 0.041 0.011

3.870 2.666 0.471 0.211 0.058 0.162 0.005 0.143 0.005 0.032 0.007

3.870 3.282 0.523 0.153 0.097 0.113 0.004 0.106 0.004 0.018 0.007

3.910 2.646 0.466 0.160 0.055 0.169 0.005 0.142 0.005 0.025 0.007

3.910 3.259 0.518 0.163 0.096 0.118 0.004 0.110 0.004 0.020 0.007

3.950 2.319 0.430 0.348 0.069 0.198 0.006 0.179 0.006 0.059 0.009

3.950 2.988 0.493 0.241 0.062 0.137 0.003 0.130 0.003 0.032 0.005

3.990 2.346 0.430 0.199 0.073 0.210 0.007 0.170 0.007 0.036 0.010

3.990 2.935 0.486 0.071 0.058 0.152 0.004 0.123 0.004 0.010 0.006

4.030 2.667 0.458 0.316 0.075 0.164 0.005 0.155 0.005 0.048 0.009

4.030 3.188 0.503 0.123 0.090 0.132 0.004 0.116 0.005 0.016 0.007

4.070 2.542 0.444 0.184 0.064 0.193 0.005 0.160 0.005 0.032 0.008

4.070 3.164 0.498 0.343 0.105 0.124 0.004 0.130 0.005 0.042 0.007

4.110 2.577 0.444 0.158 0.062 0.193 0.005 0.156 0.005 0.027 0.008

Table 28: Structure functions of copper.
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1.2 HMS Kinematic Settings

HMS Central Momentum P (GeV) HMS central angle θ

0.465 45.00

0.535 45.00

0.615 45.00

0.707 45.00

0.465 60.00

0.535 60.00

0.615 60.00

0.707 60.00

0.935 60.00

0.465 75.00

0.535 75.00

0.615 75.00

0.707 75.00

0.813 75.00

Table 29: Beam energy is 2.097 GeV.
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HMS Central Momentum P (GeV) HMS central angle θ

1.184 15.00

1.361 15.00

1.029 25.00

1.184 25.00

1.361 25.00

1.565 25.00

0.778 35.00

0.895 35.00

1.029 35.00

1.184 35.00

1.361 35.00

0.678 45.00

0.778 45.00

0.895 45.00

1.029 45.00

1.184 45.00

1.361 45.00

1.565 45.00

0.505 60.00

0.581 60.00

0.678 60.00

0.778 59.99

0.895 60.00

0.439 74.99

0.439 74.99

0.505 74.99

0.581 75.00

0.678 75.00

0.778 75.00

Table 30: Beam energy is 3.116 GeV.
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HMS Central Momentum P (GeV) HMS central angle θ

0.535 76.00

0.615 76.00

0.749 60.00

0.862 60.00

0.991 60.00

0.991 50.00

1.140 50.00

1.310 50.00

1.140 43.00

0.569 75.00

0.569 75.00

0.659 75.00

0.659 75.00

0.759 58.00

0.879 58.00

0.999 58.00

0.879 48.00

0.999 48.00

1.148 48.00

1.318 48.00

1.318 48.00

1.318 39.00

Table 31: Beam energy is 4.134 GeV.
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HMS Central Momentum P (GeV) HMS central angle θ

3.146 12.00

3.615 12.00

4.160 18.00

3.146 18.00

3.615 18.00

2.380 23.00

2.736 23.00

3.146 23.00

3.615 23.00

3.615 23.00

2.067 27.00

2.377 27.00

2.736 27.00

3.150 27.00

1.798 30.00

2.067 30.00

2.377 30.00

2.740 30.00

2.740 30.00

1.798 33.00

2.067 33.00

2.377 33.00

1.568 38.00

1.798 38.00

Table 32: Beam energy is 5.151 GeV.
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1.3 Cross Sections
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Figure 89: Extracted differential cross section for carbon compared to the model
cross section.
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Figure 90: Extracted differential cross section for carbon compared to the model
cross section.
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Figure 91: Extracted differential cross section for carbon compared to the model
cross section.
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Figure 92: Extracted differential cross section for carbon compared to the model
cross section.
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Figure 93: Extracted differential cross section for carbon compared to the model
cross section.
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Figure 94: Extracted differential cross section for carbon compared to the model
cross section.
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Figure 95: Extracted differential cross section for carbon compared to the model
cross section.
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Figure 96: Extracted differential cross section for carbon compared to the model
cross section.
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Figure 97: Extracted differential cross section for carbon compared to the model
cross section.
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Figure 98: Extracted differential cross section for iron compared to the model cross
section.
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Figure 99: Extracted differential cross section for iron compared to the model cross
section.
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Figure 100: Extracted differential cross section for iron compared to the model cross
section.
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Figure 101: Extracted differential cross section for iron compared to the model cross
section.
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Figure 102: Extracted differential cross section for iron compared to the model cross
section.
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Figure 103: Extracted differential cross section for copper compared to the model
cross section.
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Figure 104: Extracted differential cross section for copper compared to the model
cross section.
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Figure 105: Extracted differential cross section for copper compared to the model
cross section.
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Figure 106: Extracted differential cross section for copper compared to the model
cross section.


