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High-energy spin physics has emerged as an important subfield of hadron physics
since the EMC measurement of the quark contribution to the spin of the nucleon
fifteen years ago. In this introductory talk, I discuss a few topics of recent inter-
est: polarized gluon distribution, generalized parton distributions and deep-virtual

Compton scattering, and transversity distribution.

Let me start by thanking the colleagues at UVa for organizing this
wonderful workshop. The experimentalists at the Institute of Nuclear and
Particle Physics here have made impressive contributions to the field of
high-energy spin physics in the last decade. They played a significant role
in a series of SLAC experiments which have laid the foundation for our
understanding of the spin structure of the nucleon today.

This is supposed to be an introductory talk. However, it would be
impossible for me to cover all of the many interesting subjects which will
be discussed in the course of the workshop. Instead, I will focus on a
few topics in high-energy spin physics which I have personally involved
with. The outline of the presentation is as follows: I start with a big
question and discuss the lesson we learned from the EMC measurements.
Following this, I introduce the gluon helicity distribution and discuss its
measurements in the near future. A major part of my talk will be devoted
to the spin structure of the nucleon and related topics such as generalized
parton distributions and deep exclusive processes such as deeply-virtual
Compton scattering (DVCS). Towards the end of my talk, I briefly review
the current understanding about the transversity distribution.

One of the most important and difficult questions in modern physics
is how is the nucleon (or hadronic matter) made of quarks and gluons?
Unlike the question about the existence of quark-gluon plasma or Higgs
bosons, the answer does not lie in a single set of experiments or a single
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set of theoretical calculations. How does one make progress then? Experi-
mentally, we need high-precision measurements of observables such as the
neutron electromangetic form factors, the strange quark form factors, and
deep-inelastic spin asymmetries as xbj → 1. We also need to explore new
hadronic physics phenomena like the existence of glueballs and exotics, and
to understand new processes such as deeply virtual Compton scattering.
The polarization is a new dimension in which we can explore a multitude
of new observables and interesting effects. In the theoretical frontier, we
need to develop better tools such as lattice QCD and effective theories.
Above all, we must ask important and relevant questions and try our best
to answer them.

Nearly fifteen years ago, it was found from the EMC experiment that
the fraction of the nucleon spin carried in the quark spin was 1

∆Σ << 1 . (1)

What is the single most important lesson we have learned to date? My
answer is that the nucleon is much more complicated than the naive quark
model depicts. It forces us to understand the internal structure of the
nucleon from the fundamental theory of the strong interactions, quantum
chromodynamics (QCD). At the phenomenological level, one may regard
the quark model as an effective description but it is of little use for under-
standing deep-inelastic scattering if one does not understand the relation
between the QCD quarks and the constituent quarks. The major experi-
mental accomplishment in the last decade is that the EMC result has now
been solidly confirmed by SMC, E142/E143, E154/E155, and HERMES ex-
periments. [See ref. 2 for a summary and see talks by Lichtenstadt, Cates,
Beckmann and Meziani in this proceeding.]

One of the most important questions in the field of QCD spin physics
remains: where does the nucleon get its spin? We know that QCD offers
additional sources of angular momentum besides the quark spin: There is
a gluon helicity contribution ∆g; quark and gluon orbital motion also con-
tribute. The challenge we face now is to find these additional contributions
experimentally. Theoretically, one has to incorporate these contributions
into a field-theoretical framework for the spin structure of the nucleon. A
challenge for theorists is to find ways to calculate the contributions directly
from QCD.

What is the gluon helicity distribution? It is well defined theoretically
(gauge-invariant but scale-dependent,) just like the quark helicity distribu-
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tion,

∆g(x) =
i

2x

∫
dλ

2π
eiλx〈PS|F+α(0)L(0, λn)F̃+

α(λn)|PS〉 , (2)

where L(0, λ) is the standard light-cone gauge link. Its role in the angular
momentum sum rule, however, is not entirely clear because its first moment
does not correspond to a local operator. Only in the light-cone gauge
does the operator reduces to a gluon helicity operator. Then ∆g can be
interpreted as the gluon helicity contribution to the proton spin. Measuring
and understanding this quantity is a high priority in the future high-energy
spin physics (see talks by Perdekamp, Bosted and Stratmann et al. in this
proceeding).

What do we know about ∆g(x)? According to the QCD evolution of
the g1(x,Q2) structure function, one can extract it from the polarized DIS
data. The SLAC and HERMES data cover an average Q2 ∼ 3-5 GeV2. On
the other hand, the EMC and SMC data span an average Q2 of 10 GeV2.
A typical next-to-leading order QCD fit yields 2∫

∆g(x,Q2 = 1GeV2)dx = (1.0± 1.0)~ , (3)

where I have been generous on the error bar because the fits depend on the
unknown form of the gluon distribution. Almost all the fits in the literature
assume that the gluon distribution has the same sign throughout the x

range. An interesting question is what if it has a sign change somewhere?
Recently, the HERMES collaboration has reported a direct measurement
of ∆g(x) from large pt hadron production,

∆g(x)/g(x) = 0.41± 0.18± 0.03 (4)

at an average gluon x = 0.17 3. One question I have is why the gluon
helicity contributes so much to the spin of the nucleon if the constituent
quark model works so well.

There are many plans for future measurements. At CERN, the COM-
PASS collaboration will measure ∆g from the open charm production and
high-Pt hadron production 4. The RHIC spin collaboration will extract
∆g from direct photon production, jet and high pt hadron productions,
and heavy quark production 5. A new experiment at SLAC will also study
open charm production in polarized photon-nucleon (LiD target) scatter-
ing 6. The planned electron-ion collider in the United States is capable
of measuring ∆g through Q2 evolution of the structure functions, and jet
and high pt hadron productions 7. A combined analysis of the future data
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promises a fairly accurate determination of the first moment of the gluon
helicity. One important theoretical question is whether the perturbative
QCD mechanism works well under these experimental conditions.

To understand the spin structure of the nucleon in the framework of
quantum chromodymics (QCD), one considers the QCD angular momen-
tum operator in its gauge-invariant form 8

~JQCD = ~Jq + ~Jg , (5)

where

~Jq =
∫
d3x ~x× ~Tq

=
∫
d3x

[
ψ†
~Σ
2
ψ + ψ†~x× (−i ~D)ψ

]
,

~Jg =
∫
d3x ~x× ( ~E × ~B) . (6)

The quark and gluon parts of the angular momentum are generated from
the quark and gluon momentum densities ~Tq and ~E × ~B, respectively. ~Σ is
the Dirac spin-matrix and the corresponding term is the quark spin contri-
bution. ~D = ~∇− ig ~A is the covariant derivative and the associated term is
the gauge-invariant quark orbital contribution.

With the above expression, one can easily construct a sum rule for the
spin of the nucleon. Consider a nucleon moving in the z-direction, and
polarized in the helicity eigenstate λ = 1/2. The total helicity can be
evaluated as an expectation value of Jz in the nucleon state,

1
2

=
1
2
∆Σ(µ) + Lq(µ) + Jg(µ) , (7)

where the three terms denote the matrix elements of three parts of the
angular momentum operator in Eq. (6). The physical significance of each
term is obvious, modulo the scale and scheme dependence indicated by µ.
The scale dependence in Σ(µ) is generated from the U(1) axial anomaly.
Note that the individual term in the above equation is independent of the
momentum of the nucleon. In particular, it applies when the nucleon is
travelling with the speed of light (the infinite momentum frame) 9.

By examining carefully the definition of Jq,g

Jq,g(µ) =
〈
P

1
2

∣∣∣∣∫ d3x(~x× ~Tq,g)z

∣∣∣∣P 1
2

〉
, (8)
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one realizes that they can be extracted from the form factors of the quark
and gluon parts of the QCD energy-momentum tensor Tµν

q,g . Using Lorentz
and discrete symmetry, we obtain

〈P ′|Tµν
q,g |P 〉 = U(P ′)

[
Aq,g(t)γ(µP

ν)
+Bq,g(t)P

(µ
iσν)α∆α/2M

+ Cq,g(t)∆(µ∆ν)/M
]
U(P ) . (9)

Taking the forward limit in the µ = 0 component and integrating over 3-
space, one finds that Aq,g(0) give the momentum fractions of the nucleon
carried by quarks and gluons (Aq(0) + Ag(0) = 1). On the other hand,
substituting the above into the nucleon matrix element of Eq. (8), one
finds 8

Jq,g =
1
2

[Aq,g(0) +Bq,g(0)] . (10)

Therefore, the matrix elements of the energy-momentum tensor provide
the fractions of the nucleon spin carried by quarks and gluons. There is
an analogy for this. If one knows the Dirac and Pauli form factors of
the electromagnetic current, F1(Q2) and F2(Q2), the magnetic moment
of the nucleon, defined as the matrix element of (1/2)

∫
d3x(~x × ~j)z, is

F1(0) + F2(0).
The form factors of the energy-momentum tensor can be extracted from

the generalized parton distributions (GPD) 8,10. GPDs are a new type of
parton distributions which contain much more information than any other
nucleon observables that have been considered so far. They are defined
through the matrix elements of a bilocal light-cone operator,

1
2

∫
dλ

2π
eiλx

〈
P ′

∣∣∣∣ψq

(
−λ

2
n

)
6nPe−ig

∫−λ/2
λ/2 dα n·A(αn)

ψq

(
λ

2
n

)∣∣∣∣P〉
= Hq(x, ξ, t)

1
2
U(P ′) 6nU(P ) + Eq(x, ξ, t)

× 1
2
U(P ′)

iσµνnµ∆ν

2M
U(P ) . (11)

The light-cone bilocal operator (or light-ray operator) arises frequently
in hard scattering processes in which partons propagate along the light-
cone. In fact, the Taylor-expansion of this operator along the light-cone
leads us immediately to the twist-two operators which include the energy-
momentum tensor of the quarks. The parton distributions are most nat-
urally defined in terms of the matrix elements of the bilocal operator. In
this context, the Feynman x is just the conjugating Fourier variable of the
light-cone distance. The Lorentz structures in the second line in the above
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equation are independent and complete. In various limits, they reduce to
elastic form factors and Feynman parton distributions.

The GPD’s are more complicated than the Feynman parton distribu-
tions because of their dependence on the momentum transfer ∆. As such,
they contain two more scalar variables besides the Feynman variable x. The
variable t is the usual t-channel invariant which is always present in a form
factor. The ξ variable is a natural product of marrying the concepts of the
Feynman distribution and form factor: The former requires the presence
of a preferred momentum pµ along which the partons are predominantly
moving, and the latter requires a four-momentum transfer ∆; ξ is just a
scalar product of the two momenta.

Since the quark and gluon energy-momentum tensors are just the twist-
two, spin-two, parton helicity-independent operators, we immediately have
the following sum rule for the off-forward distributions;∫ 1

−1

dxx[Hq(x, ξ, t) + Eq(x, ξ, t)] = Aq(t) +Bq(t) , (12)

where the ξ dependence, or Cq(t) contamination, drops out. Extrapolating
the sum rule to t = 0, the total quark (and hence quark orbital) contribution
to the nucleon spin is obtained. A similar sum rule exists for gluons. Thus
a deep understanding of the spin structure of the nucleon may be achieved
by measuring the GPDs from high energy experiments.

Recently, M. Burkardt has constructed an interpretation of GPD in the
coordinate space 11. Consider the nucleon state localized in a transverse
plane at r⊥ = 0,

|p+, r⊥ = 0〉 = N

∫
d2p⊥|p+, p⊥〉 , (13)

where N is a normalization factor. Define a parton distribution q(x, b⊥)
which is the density of partons with longitudinal momentum xp+ and the
transverse distance b⊥ in the state,

q(x, b⊥) =
∫
dλ

4π
〈p+, r⊥|ψ(0, b)γ+ψ(λn, b)|p+, r⊥〉eixλ. (14)

Then it can be shown that q(x, b) is the Fourier transformation of
H(x,−∆2

⊥, ξ = 0) with resprect to the transverse momentum transfer,

q(x, b) =
∫
d2∆⊥H(x,−∆2

⊥)eib·∆⊥ . (15)

Thus the GPDs provide the transverse locations of the partons in the nu-
cleon.
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Usefulness of the GPD concept depends on whether they can actually be
measured in any experiment. The simplest, and possibly the most promis-
ing, type of experiments are the hard electro- or deep-inelastic production
of photons, mesons, and perhaps even lepton pairs. In the following, we
will consider separately two experiments: deeply virtual Compton scat-
tering (DVCS) in which a real photon is produced, and diffractive meson
production. There are practical advantages and disadvantages from both
processes. Real photon production is, in a sense, cleaner but the cross
section is reduced by an additional power of αem. Moreover, the DVCS
amplitude interferes with the Bethe-Heitler one. Meson production may be
easier to detect, however, it has a twist suppression, 1/Q2. In addition, the
theoretical cross section depends on the unknown light-cone meson wave
function.

Deeply virtual Compton scattering was proposed in Ref. 8 as a practical
way to measure the off-forward distributions. Consider the virtual photon
scattering in which the momenta of the incoming (outgoing) photon and nu-
cleon are q(q′) and P (P ′), respectively. The Compton amplitude is defined
as

Tµν = i

∫
d4zeq̄·z

〈
P ′

∣∣∣TJµ
(
−z

2

)
Jν

(z
2

)∣∣∣P〉
(16)

where q = (q + q′)/2. In the Bjorken limit, −q2 and P · q → ∞ and their
ratio remains finite, the scattering is dominated by the single quark process
in which a quark absorbs the virtual photon, immediately radiates a real
one, and falls back to form the recoiled nucleon. In the process, the initial
and final photon helicities remain the same. The leading-order Compton
amplitude is

Tµν = gµν
⊥

∫ 1

−1

dx

(
1

x− ξ + iε
+

1
x+ ξ − iε

) ∑
q

e2qFq(x, ξ, t,Q2)

+ iεµναβpαnβ

∫ 1

−1

dx

(
1

x− ξ + iε
− 1
x+ ξ − iε

)
×

∑
q

e2qF̃q(x, ξ, t,Q2) , (17)

where n and p are the conjugate light-cone vectors defined according to
the collinear direction of q and P , and gµν

⊥ is the metric tensor in the
transverse space. ξ is related to the Bjorken variable xB = −q2/(2P · q) by
xB = 2ξ/(1 + ξ).
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Evidence for DVCS was first seen at HERA by H1 and Zeus collabora-
tion 12,13. More recently, the HERMES collaboration at HERA and CLAS
collaboration at JLab have measured the single spin asymmetry from the in-
terference of DVCS and Bethe-Heitler amplitudes 14,15. More experiments
on DVCS will be done in the future at HERA, CERN, and Jefferson Lab.

An all-order proof of the DVCS factorization was first given by
Radyushkin 16 and recently in a different perspective by Osborne and Ji
17, and Collins and Freund 18. Factorization concerns separation of soft
physics at the scale of hadron masses and perturbative physics at the scale
of probe in the DVCS amplitude. This can be done at the same level as for
inclusive DIS. Therefore experimental cross sections can be used to directly
extract GPDs. This is nontrivial because the final photon here is on-shell.
Technically, it amounts to show all soft physics either can be absorbed into
the GPDs, which are nonperturbative anyway, or are down by powers of
1/Q2. The factorization result can be formulated in terms of an operator
product expansion familiar in the field theory textbooks.

The next-to-leading order corrections to DVCS are important for a pre-
cision extraction of GPDs and for an estimate of scaling violation. The
complete result is now known. The one-loop corrections to DVCS have first
been studied by Osborne and Ji 17, and also by Belitsky and Mueller 19.
Two-loop anomalous dimensions were obtained by Belitsky and Muller 20.
It is the same as that for inclusive DIS except for the non-diagonal contri-
bution which can be determined by one-loop conformal anomaly. Classical
chromodynamics is invariant under comformal symmetry which is broken
by quantum mechanical effects. Because of this an operator can acquire a
scaling dimension under the spatial conformal transformation (conformal
anomaly). The size for the NLO corrections has been estimated in 21.

The leading higher-twist contribution to DVCS comes from twist-three
longitudinal photon scattering. In the interference amplitude, the imagi-
nary part has a characteristic sin 2φ and real part cos 2φ dependence. The
contribution can be estimated in the so-called Wilczek-Wendzura approxi-
mation (neglecting dynamical higher-twist effects). Belitsky, Mueller, and
Kirchner et al 24 found that the correction to the single spin asymmetry
from the beam polarization is about 6% and from the target polarization
is about 9%. For the spin-averaged cross section it is 17% and 3% for the
double spin asymmetry.

DVCS can be generalized to the case of exclusive production of mesons
22. With the virtual photon and vector meson both polarized longitudinally,
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one finds

dσ

dt
(γ∗N → V N) =

4πΓV mV α
2
s(Q)η2

V

3αemQ6

×
∣∣∣∣2xB

∫ 1

−1

dx

(
1

x− ξ + iε
+

1
x+ ξ − iε

)
Fg(x, ξ, t)

∣∣∣∣2 , (18)

where again xB = 2ξ/(1 + ξ). The above formula is valid for any xB and
t smaller or around hadron mass scales. Collins, Frankfurt and Strikman
have shown that the deep-exclusive meson production is factorizable to all
orders in perturbation theory 23. The vector meson production entails a
rich spin and flavor structure. For example, the vector meson production is
sensitive to quark-helicity-independent distributions, whereas the pseudo-
scalar mesons are sensitive to quark helicity-dependent distributions. The
next-to-leading order perturbative QCD corrections for pseudo-scalar me-
son production have first been calculated by Belitsky and Mueller 24.

Recently, it has been found that a quantity very sensitive to the quark
angular momentum is the target transverse spin asymmetry for vector me-
son production 25.The asymmetry comes from the interference of two DVCS
amplitudes and is linear in the E(x, ξ, t) distribution. Since the asymmetry
involves the ratio, it is insensitive to the next-to-leading order and higher-
twist effects. The vector meson final state allows separation of different
quark flavors. For example, the ρ0 production is sensitive to the combi-
nation 2Ju + Jd, the ω meson is sensitive to 2Ju − Jd, and finally the ρ+

meson is sensitive to the Ju − Jd combination.
Finally, I discuss briefly the transversity distribution which is one of the

three twist-two quark distributions describing the state of the quark beam in
a nucleon beam 26,27. It has often been called transverse spin distribution.
However, a transversely-polarized spin-1/2 particle does not have definite
transverse spin (angular momentum), and hence the usual name is mislead-
ing. In addition, there is no simple transverse spin sum rule. [Transverse
polarization as defined through the Pauli-Lubanski vector involves angular
momentum as well as boost operators.] In non-relativistic quark model,
however, the transversity distribution is the same as the helicity distribu-
tion because the quarks can now be in the transverse spin eigenstates. The
transversity distribution allows access to the so-called tensor charge of the
nucleon 27. See talks about the transversity distribution by Drago, Bianchi,
Perdekamp, and Stratmann in this proceeding.

Experimental measurement of transversity distribution δq(x) is difficult.
This is mainly because it is a chiral-odd quantity, requiring another chiral-
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odd observable to be present in a hard process. Because of the sign of
the anomalous dimensions, the distribution vanishes asymptotically at a
large resolution scale. The theoretically cleanest experiment is the Drell-
Yan process with transversely polarized proton beams suggested by Ralston
and Soper in 1979 26. A recent study by O. Martin et al. found a very small
asymmetry at RHIC 28. One can also measure it in inclusive jet production
and direct photon production 29. A recent estimate by Soffer at al. find an
upper bound on the asymmetries at a level of 0.1 to 1 precent 30.

Another way to measure the transversity distribution is through chiral-
odd quark fragmentation functions. The simplest example is the transver-
sity fragmentation function, say, of a transversely polarized quark to a
transversely polarized Lambda 31. One can also couple it to the twist-two,
time-reversal-odd fragmentation to two pions, for instance, the interference
fragmentation between the s and p wave final states (see 32, 33, and 34).
There is also a twist-3 chiral-odd fragmentation function to pions 36. Fi-
nally, there has been many discussions recently on a twist-2, time-reversal-
odd, transverse-momentum dependent fragmentation to pion, the so-called
Collins effects 35. Unfortuately, these processes are not completely clean.
In fact, quite often there are other competing processes contributing to the
experimental observables.
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