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The nucleon spin structure functions have been extracted from measurements of
asymmetries in deep inelastic scattering of polarized leptons on polarized nuclei
in several experiments at CERN, SLAC and DESY. Except for hydrogen, the po-
larized nuclei present in practical targets: 2H, 3He, 14N, 15N, 6Li and 7Li, are
systems of bound nucleons, some of which can attain significant degrees of align-
ment. All the aligned nucleons contribute to the asymmetries. The contributions
of each nuclear species to the asymmetry have to be carefully determined, before
a reliable value for the net nucleon asymmetry is obtained. For this purpose, the
spin component of the nuclear angular momentum for every nuclear state and the
probability of each state have to be known with sufficient accuracy. In this talk
I discuss the basic corrections used to estimate the contributions of the different
nuclei, using as example deuterium and 6Li which are present in the Li2H polarized
target used during SLAC Experiment 155 to study the deuteron spin structure.

1. Introduction

Polarized deep inelastic scattering (DIS) experiments1,2,3,4,5,6,7 study the

properties of the nucleon using polarized nuclear targets. One needs a

way of relating the polarization of the nuclei in the target to the effective

polarization of the nucleons in the polarized nuclei.

Some useful pieces of information to this effect are the facts that the

nuclear polarization depends on the magnitude of the nuclear magnetic

moment µ, and that the nucleon polarization depends on the angular mo-

mentum composition of the magnetic moment. Based on this information,

a simple approach to the effective nucleon polarization can be formulated

as follows: find the fractional spin component of the magnetic moment

for each nuclear level of interest, and take the nucleon polarization as the

sum of these spin contributions to the magnetic moment. This approach is

valid in the kinematic range for which little or no kinematic dependence of
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the nucleon polarization is expected. In terms of the usual DIS kinematic

variables four-momentum transfer squared −Q2 and Bjorken scaling vari-

able x, this means Q2 ≥ 1 (GeV/c)2 and 0.015 ≤ x ≤ 0.75, which is the

experimentally measured range at SLAC7.

Two methods can be followed to solve for the spin component of µ:

model independent and model dependent. The first one relies on simple

symmetries, such as isospin, and can be applied to low Z nuclei8,9. In the

second one, a weighted sum over angular momentum states is formed, using

weights derived from a variety of models. The model dependent method

can be applied to a wide variety of nuclei.

2. Model independent method

2.1. Isosinglets

For the case of isosinglet, or self-conjugate, nuclei (2H, 6Li and 14N) the

magnetic moment and the angular momentum can be written in terms of

the spin S
(p,n)
z and orbital L

(p)
z components as9

µ = gp
s 〈S

(p)
z 〉+ gn

s 〈S
(n)
z 〉+ gp

l 〈L
(p)
z 〉 (1)

I = 〈S(p)
z 〉+ 〈S(n)

z 〉+ 〈L(p)
z 〉+ 〈L(n)

z 〉 (2)

where g
p(n)
s = 2µp(n) = 2(2.793,−1.913) are free nucleon g-factors. Solving

for the spin component and using isospin symmetry one gets

〈S(p)
z 〉 = 〈S(n)

z 〉 =
(µ− I

2)

0.76
. (3)

Substituting µ in eq. 3 one gets the results shown in Table 1

Table 1. Spin 1 nuclei.

Nuclide Magnetic Spin Orbital

moment [µN ] component component (×1/2)

2H 0.857 0.94 0.03

6Li 0.822 0.847 0.077

14N 0.404 -0.26 0.63

These results will be compared with those of the model dependent method

at the end.
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2.2. Other mirror nuclei

Isospin symmetry can also be applied to the mirror doublets (3H – 3He,
7Li – 7Be, 15N – 15O). In this case, one solves the sum and the difference

of the magnetic moments of the doublet for the spin component

µ(t3 =
1

2
) + µ(t3 = −

1

2
) = 〈

∑

i

l
(i)
z 〉+ (µp + µn)〈

∑

i

σ
(i)
z 〉

µ(t3 =
1

2
)− µ(t3 = −

1

2
) = 〈

∑

i

τ3l
(i)
z 〉+ (µp − µn)〈

∑

i

τ3σ
(i)
z 〉. (4)

The spin term in the difference is related to the Gamow-Teller β decay

matrix element10,11,12

(gA

gV

)2∣
∣

∣
〈
∑

i

τ3σ
(i)
z 〉

∣

∣

∣

2

=
ft

6170
− 1. (5)

For the pair 7Li – 7Be, the magnetic moment of the radioactive 7Be

(half-life: 53.3 days) disappointingly has not been measured. Results for

the other two pairs are shown at the end.

3. Model dependent method

In the model dependent method, the nuclear ground state wave function is

expanded in terms of angular momentum eigenstates13,8

ψ =
∑

L,S

cLSψLS (6)

where the coefficients |cLS |
2 = PL represent normalized probabilities PL =

NL/N , N =
∑

NL, of occurrence of the L, S states. The usual notation for

the states is ψLS = CG |mL,mS ;M〉 where CG represents Clebsch-Gordan

coefficients.

The nucleon polarization is the fraction of nucleons aligned with the nu-

clear spin. The polarization for each level is p
(L)
p,n = (N↑↑

L −N↑↓
L )/NL, where

N↑↑
L (N↑↓

L ) are the number of nucleons in level L with their spins parallel

(anti parallel) to the spin of the nucleus, and the effective polarization is

pp,n =
∑

PL p
(L)
p,n. The examples below illustrate how the method works.

3.1. Deuterium

The deuteron is in the Iπ = 1+ spin triplet state (nucleons with parallel

spins). Only even components of orbital angular momentum are allowed.
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The total angular momentum is formed by L–S coupling L = `p + `n and

S = sp + sn. In the D state I = L+ S = 2⊗ 1.

With this notation the S state and the D,M = +1 substate can be

written as

ψ0,1 = c0,1|0, 1; 1〉

ψ2,1 = c2,1

(√

3
5 |2,−1; 1〉+

√

3
10 |1, 0; 1〉+

√

1
10 |0, 1; 1〉

)

, (7)

with a similar expression for the M = −1 substate. By inspection of the

relative signs of the mS and M quantum numbers one sees that in the D

state the nucleons are anti parallel to the deuteron spin 3/5 of the time,

and parallel 1/10. The nucleons in the mS = 0 substates have zero net

spin. The nucleon polarization in the D level is then

p(D)
p,n =

N↑↑
D

ND

−
N↑↓

D

ND

=
1

10
−

3

5
= −

1

2
, (8)

and the effective nucleon polarization in deuterium is

pp,n = PS p
(S)
p,n + PD p

(D)
p,n =

1

N
(NS −

1

2
ND)

pp,n = 1− 1.5PD = 0.926± 0.016 , (9)

with N = NS +ND. The D state probability PD = 0.0490± 0.0104 is an

average of five models14. This constant value for the effective proton or

neutron polarization is good for most of the range in x.

3.2. Lithium

6Li is another spin 1 nucleus Iπ = 1+, but since it is a system with more

than two bodies additional angular momentum states are allowed. In a

3-body configuration consisting of an α particle core plus a proton and a

neutron, S, P and D levels are allowed. The S and D states for the proton

and neutron outside the core are as in 2H: 6Li can be effectively treated as

a pair of α+ d clusters. The P state has two substates, singlet and triplet.

In the singlet state, the nucleons have zero net spin. In the triplet state,

M = +1 substate one has

ψ1,1 = c1,1

(

√

1

2
|1, 0; 1〉 −

√

1

2
|0, 1; 1〉

)

. (10)

Only one half of the nucleons in this state are aligned with the Li spin,

so p
P (M=±1)
p,n = 1/2. The nucleons in substates with mS = 0 have their

spins equally aligned in opposite directions.
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The effective nucleon polarization in 6Li is

pp,n = PS p
(S)
p,n + PP0 p

(P0)
p,n + PP1 p

(P1)
p,n + PD p

(D)
p,n

=
1

N
(NS + 0 +

1

2
NP1 −

1

2
ND)

= 1− PP0 − 0.5PP1 − 1.5PD . (11)

The PL probabilities have been calculated in ref.15 by solving three-body

Fadeev equations for a variety of NN and αN potentials. Taking the aver-

age of those results for eight models that predict µ(6Li) to better than 2%,

the probabilities are14 PP0 = 0.0238, PP1 = 2.9× 10−3 and PD = 0.0725,

which result in a nucleon polarization in 6Li of (0.866±0.012)/3. The un-

certainty quoted is the standard deviation of the results of the individual

models.

A Green’s functions Monte Carlo calculation16 obtained the internal

nucleon momentum dependence of the polarization for 3He, 6Li and 7Li. It

predicts integrated nucleon spin densities of 1.93 for spin up and 1.07 for

spin down in 6Li with its nuclear spin up, or a net nucleon polarization of

0.86/3. The simplified estimate of ref.17 for the same quantity is 0.82/3.

Shell and cluster models also give reasonable numbers for 7Li and for the

N isotopes. In these cases, a kinematics independent nucleon polarization

is obtained. Additional effects must be included to describe the nucleon

polarization at small x. A recent work18 includes the effects of shadowing

and isobar configurations in 3He.

4. Summary

Results for several nuclear species, including the examples discussed above

are summarized in Table 2 below.
∗ p(n) in 3H (3He)

Acknowledgements

This work was supported by Department of Energy contract DE-FG02-

96ER40950 and by the Institute of Nuclear and Particle Physics of the

University of Virginia.

References

1. EMC, J. Ashman et al., Phys. Lett. B206, 364 (1988); Nucl. Phys. B328, 1
(1989).

2. SLAC E142, P. L. Anthony et al., Phys. Rev. Lett. 71, 959 (1993); Phys. Rev.

D54, 6620 (1996).



October 17, 2002 10:57 WSPC/Trim Size: 9in x 6in for Proceedings orqcdshort2

6

Table 2. Nucleon Polarization.

Nuclide Model Independent Model Dependent

Ref.14 Ref.10 Ref.14 Ref.18 Ref.19 Ref.15 Ref.16 Ref.17

2H 0.94 0.926

3H-3He∗ 0.93 0.96 0.86 0.879 0.865

6Li 0.85 0.866 0.866 0.86 0.82

7Li 0.57 0.59

14N −0.26 -0.33

15N −0.22 -0.24 -0.33

3. SLAC E143, K. Abe et al., Phys. Rev. Lett. 74, 346 (1995); ibid. 75, 25 (1995);
Phys. Rev. D58, 112003 (1998).

4. SMC, D. Adams et al., Phys. Lett. B329, 399 (1994); SMC, B. Adeva et al.,

ibid. B302, 533 (1993); ibid. B357, 248 (1995).
5. SLAC E154, K. Abe et al., Phys. Rev. Lett. 79, 26 (1996).
6. HERMES collaboration, K. Ackerstaff et al., Phys. Lett. B404, 383 (1997).
7. SLAC E155, P. L. Anthony et al., Phys. Lett. B463, 339 (1999).
8. R. G. Sachs, Phys. Rev. 69, 611 (1946).
9. B. Alex Brown, (private communication).
10. Kenzo Sugimoto, Phys. Rev. 182, 1051 (1969).
11. M. A. Preston, Physics of the Nucleus (Addison-Wesley, Reading-Mass.,

1962), p. 445.
12. B. A. Brown and B. H. Wildenthal, Phys. Rev. C28, 2397 (1983).
13. Robert G. Sachs, Nuclear Theory (Addison-Wesley, Cambridge, 1953), p.

247.
14. O. A. Rondon, Phys. Rev. C60, 035201 (1999).
15. N. W. Schellingerhout, L. P. Kok, S. A. Coon and R. M. Adam, Phys. Rev.

C48, 2714 (1993).
16. B. S. Pudliner et al. Phys. Rev. C56, 1720 (1997).
17. L. Frankfurt and M. I. Strikman, Nucl. Phys. A405, 557 (1983).
18. F. Bissey, V. Guzey, M. Strikman and A. W. Thomas, Phys. Rev. C65,

064317 (2002).
19. J. L. Friar et al., Phys. Rev. C42, 2310, (1990).


