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The classification of quark distribution functions in transversely polarized hadrons
is presented. Time-reversal ‘odd’ distributions are also discussed.

I will present a classification of quark distribution functions, in particular

for transversely polarized hadrons. This contribution is based to a large

extent on the recent report by Barone, Ratcliffe and myself [1], where a

rather huge list of references can be found. The discussion on the so-called

time-reversal odd distribution functions has been expanded to take into

account works which appeared very recently in the literature.

At leading-twist level there are three distribution functions if transverse

momentum is neglected [2, 3]:

the number density, or unpolarised distribution f(x)

the longitudinal polarisation, or helicity distribution ∆f(x)

the transverse polarisation, or transversity distribution ∆T f(x)

f(x) = f+(x) + f−(x)

∆f(x) = f+(x) − f−(x)

∆T f(x) = f↑(x) − f↓(x)

As we will see later, if we admit a finite quark transverse momentum k⊥,

five new distributions appear. Two of them are the so-called time-reversal

odd distributions:

no k⊥︷ ︸︸ ︷
f , ∆f , ∆T f ,

k⊥-dependent
︷ ︸︸ ︷
g1T , h

⊥
1L , h

⊥
1T , f

⊥
1T , h

⊥
1︸ ︷︷ ︸

T -odd

.
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In the following I will discuss in detail the origin of the above outlined

classification.

1. Leading-twist, k⊥-independent distributions

1.1. Correlation matrix

It is convenient to introduce the correlation matrix:

Φij(k, P, S) =

∫
d4ξ eik·ξ 〈PS|ψj(0)L†(0,∞)L(∞, ξ)ψi(ξ)|PS〉 (1.1.1)

where, to make Φ gauge invariant a link operator has been inserted between

the quark fields. The link reads:

L(y,∞) = P exp

(
−ig

∫ ∞

y

dsµA
µ(s)

)
. (1.1.2)

Quark distribution functions can then be expressed as

Tr(ΓΦ) =

∫
d4ξ eik·ξ 〈PS|ψ(0)L†(0,∞)ΓL(∞, ξ)ψ(ξ)|PS〉 (1.1.3)

The presence of the link in the definition of distributions is crucial, since it is

responsible for the non-vanishing of the time-reversal odd distributions [4].

We will come back to this point later.

The correlation function (1.1.1) transforms as

Φ†(k, P, S) = γ0 Φ(k, P, S) γ0 (hermiticity) (1.1.4)

Φ(k, P, S) = γ0 Φ(k̃, P̃ ,−S̃) γ0 (parity) (1.1.5)

If the link operators were not inserted in the definition of the correlation

function, the following relation would hold:

Φ∗(k, P, S) = γ5C Φ(k̃, P̃ , S̃)C†γ5 (naive time-reversal) . (1.1.6)

Actually, due to the link, the transformation under time reversal is more

complicated and it will be discussed later.

The most general decomposition of Φ in a basis of Dirac matrices is

Φ(k, P, S) = 1
2

{
S  + Vµ γ

µ +Aµγ
5γµ + iP5γ

5 + 1
2 i Tµν σ

µνγ5
}
. (1.1.7)
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Imposing the constraints on hermiticity, parity and naive time-reversal we

get:

S = 1
2 Tr(Φ) = C1 (1.1.8a)

Vµ = 1
2 Tr(γµΦ) = C2 P

µ + C3 k
µ (1.1.8b)

Aµ = 1
2 Tr(γµγ5Φ) = C4 S

µ + C5 k·S P
µ + C6 k·S k

µ (1.1.8c)

P5 = 1
2i Tr(γ5Φ) = 0 (1.1.8d)

T µν = 1
2i Tr(σµνγ5Φ) = C7P

[µSν] + C8k
[µSν] + C9k·SP

[µkν] (1.1.8e)

If we relax the constraint of time-reversal invariance coming from the naive

eq.(1.1.6) three more terms appear:

Vµ = · · ·+ C10 ε
µνρσSνPρkσ (1.1.9)

P5 = C11 k·S (1.1.10)

T µν = · · ·+ C12 ε
µνρσPρkσ (1.1.11)

Leading-twist contributions are of order O(P+) in the infinite momentum

frame. Ignoring quark transverse momentum, only the vector, axial, and

tensor terms survive:

Vµ = 1
2

∫
d4ξ eik·ξ 〈PS|ψ(0)γµψ(ξ)|PS〉 = A1 P

µ (1.1.12a)

Aµ = 1
2

∫
d4ξ eik·ξ 〈PS|ψ(0)γµγ5ψ(ξ)|PS〉 = λN A2 P

µ (1.1.12b)

T µν = 1
2i

∫
d4ξ eik·ξ 〈PS|ψ(0)σµνγ5ψ(ξ)|PS〉 = A3 P

[µ
S

ν]
⊥(1.1.12c)

The leading-twist distribution functions f(x), ∆f(x) and ∆T f(x) are ob-

tained by integrating A1, A2 and A3, respectively, over k, with the con-

straint x = k+/P+:




f(x)

∆f(x)

∆T f(x)



 =

∫
d4k

(2π)4





A1(k2, k·P )

A2(k2, k·P )

A3(k2, k·P )



 δ

(
x−

k+

P+

)
(1.1.13)

that is

f(x) =
1

2

∫
d4k

(2π)4
Tr(γ+Φ) δ(k+ − xP+) (1.1.14a)

∆f(x) =
1

2

∫
d4k

(2π)4
Tr(γ+γ5Φ) δ(k+ − xP+) (1.1.14b)

∆T f(x) =
1

2

∫
d4k

(2π)4
Tr(γ+γ1γ5Φ) δ(k+ − xP+) (1.1.14c)
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The three leading-twist distribution functions are light-cone Fourier trans-

forms of expectation values of quark-field bilinears:

f(x) =

∫
dξ−

4π
eixP+ξ−〈PS|ψ(0)γ+ψ(0, ξ−, 0⊥)|PS〉 (1.1.15a)

∆f(x) =

∫
dξ−

4π
eixP+ξ−〈PS|ψ(0)γ+γ5ψ(0, ξ−, 0⊥)|PS〉 (1.1.15b)

∆T f(x) =

∫
dξ−

4π
eixP+ξ−〈PS|ψ(0)γ+γ1γ5ψ(0, ξ−, 0⊥)|PS〉 (1.1.15c)

1.2. Antiquark distributions

Formal relations between quark and antiquark distribution functions exist:

f(x) = −f(−x) (1.2.1a)

∆f(x) = ∆f(−x) (1.2.1b)

∆T f(x) = −∆T f(−x) . (1.2.1c)

These relations are difficult to use in practice for computing the antiquark

distributions, since for x < 0 connected and semiconnected diagrams con-

tribute to the previous functions (contributions (a) and (b) in the figure) [5].

At the moment, calculations of the antiquark transversity distributions have

been presented in Ref. [6] and in Ref. [7]. While in [6] these distributions

have been obtained inserting 4-quarks intermediate states in the expression

of antiquark distributions, in Ref. [7] eq.(1.2.1c) has been used and the

previous caveat therefore applies.

|n〉

(a)

|n〉

(b)
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1.3. Probabilistic interpretation of distribution functions

To see more easily the physical meaning of the leading twist distributions

they can be rewritten as it follows:

f(x) = 1√
2

∑

n

δ
(
(1− x)P+ − P+

n

)
|〈PS|ψ(+)(0)|n〉|2 (1.3.1)

∆f(x) = 1√
2

∑

n

δ
(
(1− x)P+ − P+

n

)

×
{∣∣〈PS|P+ψ(+)(0)|n〉

∣∣2 −
∣∣〈PS|P−ψ(+)(0)|n〉

∣∣2
}

(1.3.2)

∆T f(x) = 1√
2

∑

n

δ
(
(1 − x)P+ − P+

n

)

×
{∣∣〈PS|P↑ψ(+)(0)|n〉

∣∣2 −
∣∣〈PS|P↓ψ(+)(0)|n〉

∣∣2
}

(1.3.3)

where the Pauli-Lubanski projectors are:

P± = 1
2 (1 ± γ5) (for helicity)

P↑↓ = 1
2 (1± γ1γ5) (for transverse polarisation).

It is possible to define vector, axial and tensor charges as first moments of

the distributions:

∫ +1

−1

dx f(x) =

∫ 1

0

dx
[
f(x) − f(x)

]
= gV (1.3.4a)

∫ +1

−1

dx∆f(x) =

∫ 1

0

dx
[
∆f(x) + ∆f(x)

]
= gA (1.3.4b)

∫ +1

−1

dx∆T f(x) =

∫ 1

0

dx
[
∆T f(x) −∆T f(x)

]
= gT (1.3.4c)

The vector and tensor charges are the first moments of flavour non-singlet

combinations (quarks minus antiquarks) whereas the axial charge is the

first moment of a flavour singlet combination (quarks plus antiquarks).

1.4. Quark-nucleon helicity amplitudes

Another way to classify leading-twist quark distribution functions comes by

expressing the distributions in terms of quark-nucleon forward amplitudes.

There are in general 16 amplitudes. Imposing helicity conservation,

Λ + λ = Λ′ + λ′ (1.4.1)
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only 6 amplitudes survive:

A++,++ , A−−,−− , A+−,+− , A−+,−+ , A+−,−+ , A−+,+− (1.4.2)

Parity invariance implies

AΛλ,Λ′λ′ = A−Λ−λ,−Λ′−λ′ (1.4.3)

and gives the following 3 constraints on the amplitudes:

A++,++ = A−−,−− (1.4.4)

A++,−− = A−−,++ (1.4.5)

A+−,−+ = A−+,+− (1.4.6)

We are left with three independent amplitudes

A++,++ , A+−,+− , A+−,−+ (1.4.7)

+ +

+ +

+ +

− −

+ −

− +

Two amplitudes, A++,++ and A+−,+−, are diagonal in the helicity basis.

The third, A+−,−+, is off-diagonal (helicity flip: λ = −λ′).

Using the optical theorem we can write the distributions as:

f(x) = f+(x) + f−(x) ∼ Im(A++,++ +A+−,+−) (1.4.8a)

∆f(x) = f+(x) − f−(x) ∼ Im(A++,++ −A+−,+−) (1.4.8b)

∆T f(x) = f↑(x) − f↓(x) ∼ ImA+−,−+ (1.4.8c)

In a transversity basis (with ↑ directed along y)

| ↑〉 = 1√
2

[
|+〉 + i|−〉

]
,

| ↓〉 = 1√
2

[
|+〉 − i|−〉

]
,

(1.4.9)

the transverse polarisation distributions ∆T f is related to a diagonal am-

plitude

∆T f(x) = f↑(x) − f↓(x) ∼ Im(A↑↑,↑↑ −A↑↓,↑↓) . (1.4.10)
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If transverse momenta of quarks are not neglected, the number of indepen-

dent helicity amplitudes increases. The transverse-momentum dependent

distributions are discussed in the next section.

1.5. The Soffer inequality

It is useful to introduce the quark-nucleon vertices aΛ,λ‘ (notice the sign of

the elicity due to the incoming quark arrow):

aΛ,λ′ ∼

Λ

λ′

X

Leading-twist distributions can be rewritten in the form

f(x) ∼ Im(A++,++ +A+−,+−) ∼
∑

X

(a∗++a++ + a∗+−a+−) (1.5.1a)

∆f(x) ∼ Im(A++,++ −A+−,+−) ∼
∑

X

(a∗++a++ − a∗+−a+−)(1.5.1b)

∆T f(x) ∼ ImA+−,−+ ∼
∑

X

a∗−−a++ (1.5.1c)

From the positivity constraint:
∑

X

|a++ ± a−−|
2 ≥ 0 (1.5.2)

and using parity invariance, we obtain the inequality:
∑

X

a∗++a++ ±
∑

X

a∗−−a++ ≥ 0 . (1.5.3)

The latter can be written as:

f+(x) ≥ |∆T f(x)| (1.5.4)

which is equivalent to:

f(x) + ∆f(x) ≥ 2|∆T f(x)| (1.5.5)

This is the so-called Soffer inequality [8].

Soffer inequality holds both for quarks and antiquarks and it is preserved

by QCD evolution [9].
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1.6. QCD evolution

The main features of the perturbative evolution of the transversity distru-

butions are the following:

• The gluon field cannot contribute at LO in the case of spin-half

hadrons as it would require helicity flip of two units in the corre-

sponding hadron-parton amplitude. Thus, in the case of baryons

the evolution is of purely non-singlet type.

• In contrast to the behaviour of both q and ∆q, the anomalous

dimensions governing ∆T q do not vanish for n = 1 and hence

there is no sum rule associated with the tensor charge

• Moreover ∆T γqq(n) < ∆γqq(n) for all n. This implies that for

(hypothetically) identical starting distributions (i.e., ∆T q(x,Q
2
0) =

∆q(x,Q2
0)), ∆T q(x,Q

2) everywhere in x will fall more rapidly than

∆q(x,Q2) with increasing Q2 (see figure (from [10])).

• At LO the first moment of h1 falls with increasing Q2 as:

δq(Q2) =

[
αs(Q2)

αs(Q2
0)

]−2∆T γ(0)
qq (1)/β0

δq(Q2
0)

=

[
αs(Q2

0)

αs(Q2)

]−4/27

δq(Q2
0) (1.6.1)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0.1 1

x

(b)

NLO evolution

Q
2 

= 20 GeV
2

µ2= 0.34 GeV2

∆
T
u

∆u

NLO input

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0.1 1

x

∆
T
u

∆u

LO input

(a)

LO evolution

Q
2 

= 20 GeV
2

µ2= 0.23 GeV2
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2. Transverse-momentum dependent distributions

Transverse momentum is necessary in semi-inclusive DIS to study the P h⊥
distribution of the produced hadron.

The quark momentum is now given by

kµ ' xP µ + kµ
⊥ (2.0.1)

kµ
⊥ is zeroth order in P+, and it is thus suppressed by one power of P+

with respect to the longitudinal momentum.

2.1. T-even distributions

Taking into account the transverse momentum, the quark-quark correlation

matrix then reads:

Φ(k, P, S) =
1

2

{
A1 /P +A2 λN γ5 /P +A3 /P γ5 /S⊥

+
1

M
Ã1 k⊥·S⊥ γ

5 /P + Ã2
λN

M
/P γ5 /k⊥

+
1

M2
Ã3 k⊥·S⊥ /P γ5 /k⊥

}
(2.1.1)

If we do not integrate over k⊥, we obtain six k⊥-dependent distribution

functions. Three of them are such that f(x) =
∫

d2
k⊥f(x,k2

⊥), etc. The

other three are completely new

Φ[γ+] = Pq/N (x,k⊥) = f(x,k2
⊥) (2.1.2a)

Φ[γ+γ5] = Pq/N (x,k⊥)λ(x,k⊥)

= λN ∆f(x,k2
⊥) +

k⊥·S⊥
M

g1T (x,k2
⊥) (2.1.2b)

Φ[iσi+γ5] = Pq/N (x,k⊥) si
⊥(x,k⊥)

= Si
⊥ ∆′

T f(x,k2
⊥) +

λN

M
ki
⊥ h

⊥
1L(x,k2

⊥)

−
1

M2

(
ki
⊥k

j
⊥ +

1

2
k

2
⊥ g

ij
⊥

)
S⊥j h

⊥
1T (x,k2

⊥) (2.1.2c)

where Pq/N (x,k⊥) is the probability of finding a quark with longitudi-

nal momentum fraction x and transverse momentum k⊥, and λ(x,k⊥),

s⊥(x,k⊥) are the quark helicity and transverse spin densities, respectively.

The three new (T-even) distributions are:

– k⊥-dependent transverse polarisation distributions of quarks in a trans-

versely polarised nucleon
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Pq↑/N↑(x,k⊥) −Pq↓/N↑(x,k⊥) = cos(φS − φs) ∆′
T f(x,k2

⊥) (2.1.3)

+
k

2
⊥

2M2
cos(2φk − φS − φs)h⊥1T (x,k2

⊥)(2.1.4)

– longitudinal polarisation distribution of quarks in a transversely polarised

nucleon

Pq+/N↑(x,k⊥)−Pq−/N↑(x,k⊥) =
|k⊥|

M
cos(φS − φk) g1T (x,k2

⊥) (2.1.5)

– transversely polarised quark distribution in a longitudinally polarised

nucleon

Pq↑/N+(x,k⊥)−Pq↓/N+(x,k⊥) =
|k⊥|

M
cos(φk − φs)h⊥1L(x,k2

⊥) (2.1.6)

2.2. T-odd distributions

Relaxing the time-reversal invariance condition two additional terms in

the vector and tensor components of Φ arise, which give rise to two k⊥-

dependent T -odd distribution functions

Φ[γ+] = · · · −
εij
⊥k⊥iS⊥j

M
f⊥1T (x,k2

⊥) (2.2.1a)

Φ[iσi+γ5] = · · · −
εij
⊥k⊥j

M
h⊥1 (x,k2

⊥) (2.2.1b)

the physical interpretation of the two T-odd distributions is:

– number density of unpolarised quarks in a transversely polarised nucleon

[11, 12]

Pq/N↑(x,k⊥) −Pq/N↓(x,k⊥) = Pq/N↑(x,k⊥)−Pq/N↑(x,−k⊥)

= −2
|k⊥|

M
sin(φk − φS) f⊥1T (x,k2

⊥) (2.2.2a)

– quark transverse polarisation in an unpolarised hadron [13]

Pq↑/N (x,k⊥) −Pq↓/N (x,k⊥) = −
|k⊥|

M
sin(φk − φs)h⊥1 (x,k2

⊥) (2.2.2b)



October 15, 2002 10:31 WSPC/Trim Size: 9in x 6in for Proceedings drago˙proc

11

2.3. Why the so-called T-odd distributions can be

non-vanishing?

We come back to eqs.(1.1.1–1.1.3), to clarify the physical meaning of the

link operator. It represents the final state interaction in the eikonal ap-

proximation between the struck quark and the gluon field in the target

spectator [4]. The link L(y,∞) of eq.(1.1.2) integrates from the point y

to future infinity. The crucial observation is that, under time-reversal the

future-pointing Wilson lines are replaced by past-pointing ones. The latter

are the appropriate choice for factorization in Drell-Yan processes. This is

the reason why it was naive to assume eq.(1.1.6) as the appropriate one to

describe the time-reversal transformation of the correlation function (and

similarly for the distribution functions).

The previous argument by Collins is based on QCD and it shows that

“T-odd” distribution functions are in principle non-vanishing, since they

actually are not T-odd! In practical calculations of distribution functions,

effective lagrangians are used instead of QCD, since at a low scale effective

degrees of freedom take the place of the QCD ones. For instance chiral

lagrangians can be used, were the effective degrees of freedom are quarks

and chiral fields instead of quarks and gluons. How is it then possible to

have non-vanishing T-odd distribution functions in those effective models?

A possible answer is that in chiral models the representation of the time-

reversal operator is more complicated than the usual one, and it mixes the

components of the up-down doublet [14].

The problem of the physical origin of T-odd distribution functions in QCD

has also been discussed in other very recent papers, and I suggest to follow

the rapidly expanding literature on it [15].

3. Conclusions

The transverse polarisation of hadrons opens many interesting questions

both from the theoretical and the experimental viewpoint.

For theoreticians, questions related to single-spin asymmetries and in par-

ticular to T-odd distribution (and fragmentation) functions are of extreme

interest, both for finding which constraints can be obtained directly from

QCD and also for the practical (but challenging) purpose of computing

them within an effective model.

For experimentalists, the measure of the leading-twist transversity distribu-

tion ∆T f(x) is probably the most important task, together with the study

of semi-inclusive DIS reactions, which will eventually allow to clarify the
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questions related to T-odd distribution and fragmentation functions.

It is a pleasure to thank Mauro Anselmino and Vincenzo Barone, with

whom I discussed in detail all the ideas presented here.
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