
October 15, 2002 9:3 WSPC/Trim Size: 9in x 6in for Proceedings belitsky

NUCLEON HOLOGRAM WITH EXCLUSIVE

LEPTOPRODUCTION

A.V. BELITSKY

Department of Physics, University of Maryland, College Park, MD 20742-4111,

USA

D. MÜLLER
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Hard exclusive leptoproductions of real photons, lepton pairs and mesons are the
most promising tools to unravel the three-dimensional picture of the nucleon, which
cannot be deduced from conventional inclusive processes like deeply inelastic scat-
tering.

1. From macro to micro

Why do we see the world around us the way it is? Human eyes can de-

tect electromagnetic waves in a very narrow range of wavelength, λγ ∼
0.4 − 0.7µm, which we call visible light. The light from a source, say the

sun, is reflected from the surface of macro-objects and is absorbed by the

eye’s retina which transforms it into a neural signal going to the brain which

forms the picture. The same principle is used in radars which detect re-

flected electromagnetic waves of a meter wavelength. The only requirement

to “see” an object is that the length of resolving waves must be comparable

to or smaller than its size. The same conditions have to be obeyed in case

one wants to study the microworld, e.g., the structure of macromolecules

(DNA, RNA) or assemblies (viruses, ribosomes). Obviously, when one puts

a chunk of material in front of a source of visible light, see Fig. 1, the object

merely leaves a shadow on a screen behind it and one does not see its ele-

mentary building blocks, i.e., atoms. Obviously, visible light is not capable

to resolve the internal lattice structure of a crystal since the size of an in-

dividual atom, say hydrogen, is of order ratom ∼ (αemme)
−1 ∼ (10 KeV)

−1

and the light does not diffract from it. Therefore, to “see” atoms in crystals

one has to have photons with the wavelength λγ ≤ ratom, or equivalently, of
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Eγ ~ .0 -1eV5

λ µγ ~ . .0 m4 07−• Visible light: • X-ray: λγ ~ .003 3− nm

Eγ ~1-100KeV

Figure 1. Left: A beam of visible light does not resolve the crystal’s structure. Right:
An X-ray beam does and creates a diffraction pattern on the photo-plate.

the energy Eγ ≥ r−1
atom. To do this kind of “nano-photography” one needs a

beam of X-rays which after passing through the crystal creates fringes on a

photo-plate, see Fig. 1. Does one get a three-dimensional picture from such

a measurement? Unfortunately, no. In order to reconstruct atomic posi-

tions in the crystal’s lattice one has to perform an inverse Fourier transform.

This requires knowledge of both the magnitude and the phase of diffracted

waves. However, what is measured experimentally is essentially a count

of number of X-ray photons in each spot of the photo-plate. The num-

ber of photons gives the intensity, which is the square of the amplitude of

diffracted waves. There is no practical way of measuring the relative phase

angles for different diffracted spots experimentally. Therefore, one cannot

unambiguously reconstruct the crystal’s lattice. This is termed as “The

Phase Problem”. None of techniques called to tackle the problem provides

a parameter-free answer.

When we study hadronic matter at the fundamental level we attempt to

perform the “femto-photography” of the interior constituents (quarks and

gluons) of strongly interacting “elementary” particles such as the nucleon.

Quantum χρωµα dynamics, the theory of strong interaction, is not handy

at present to solve the quark bound state problem. Therefore, phenomeno-

logical approaches, based on accurate analyses of high-energy scattering

experimental data and making use of rigorous perturbative QCD predic-

tions, are indispensable for a meticulous understanding of the nucleon’s

structure. As we discuss below most of high-energy processes resolving

the nucleon content, such as described in terms of form factors and inclu-

sive parton densities, suffer from the same “Phase Problem” and therefore

they lack the opportunity to visualize its three-dimensional structure. A

panacea is found in newborn generalized parton distributions 1, which are

measurable in exclusive leptoproduction experiments.
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2. Form factors

Nucleon form factors are measured in the elastic process `N → `′N ′. Its

amplitude is given by the lepton current Lµ(∆) ≡ ū`(k −∆)γµu`(k) inter-

acting via photon exchange with the nucleon matrix element of the quark

electromagnetic current jµ(x) =
∑

q eq q̄(x)γµq(x):

ANN ′ =
1

∆2
Lµ(∆)〈p2|jµ(0)|p1〉 ≡

1

∆2
Lµ(∆)

{

hµF1(∆
2) + eµF2(∆

2)
}

. (1)

Here the matrix element of the quark current is decomposed in terms of

Dirac and Pauli form factors (∆ ≡ p2 − p1), accompanied by the Dirac

bilinears hµ ≡ ūN (p2)γµuN (p1) and eµ ≡ ūN (p2)iσµν∆νuN(p1)/(2MN). In

the Breit frame ~p2 = −~p1 = ~∆/2 there is no energy exchange E1 = E2 = E

and thus relativistic effects are absent. The momentum transfer is three-

dimensional ∆2 = −~∆2, so that

〈p2|j0(0)|p1〉 = ϕ̃∗2ϕ̃1GE(−~∆2) ,

〈p2|~j(0)|p1〉 = − i

2MN
ϕ̃∗2[~∆× ~σ]ϕ̃1GM (−~∆2) , (2)

are expressed in terms of Sachs electric GE(∆2) ≡ F1(∆
2) +

∆2/(4M2
N)F2(∆

2) and magnetic GM (∆2) ≡ F1(∆
2) + F2(∆

2) form fac-

tors. Introducing the charge q ≡ 1
V

∫

d3~x j0(~x) and magnetic moment

~µ ≡ 1
V

∫

d3~x [~x×~j](x) operators, one finds the normalization

〈p|q|p〉 = ϕ̃∗
2ϕ̃1GE(0) , 〈p|~µ|p〉 =

ϕ̃∗2~σϕ̃1

2MN
GM (0) . (3)

The interpretation of Sachs form factors as Fourier transforms of charge

and magnetization densities in the nucleon requires to introduce localized

nucleon states in the position space |~x〉 as opposed to the plane-wave states

used above |p〉,

|~x〉 =
∑

~p

ei~p·~x

√
V

Ψ(~p)|~p〉 , with
∑

~p

|Ψ(~p)|2 = 1 . (4)

Here a very broad wave packet Ψ(~p) ≈ const is assumed in the momentum

space. Then the charge density ρ(~x) of the nucleon, localized at ~x = 0, is

〈~x = 0|j0(~x)|~x = 0〉 ≡ ϕ̃∗
2ϕ̃1ρ(~x) = ϕ̃∗

2ϕ̃1

∫

d3~∆

(2π)3
e−i~∆·~xGE(−~∆2) , (5)

and similar for the magnetic form factor. The famous Hofstadter’s exper-

iments established that the proton is not a point-like particle ρpoint(~x) =
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Figure 2. Probabilistic interpretation of form factors, parton densities and generalized
parton distributions at η = 0 in the infinite momentum frame pz →∞.

δ3(~x) which would have Gpoint
E = const, but rather GE(−~∆2) ≈ (1 +

~∆2r2
N/6)−2 with the mean square radius rN ≈ 0.7 fm.

The Breit frame is not particularly instructive for an interpretation of

high-energy scattering. Here an infinite momentum frame (IMF) is more

useful, see discussion below. In this frame, obtained by a z-boost, the

nucleon momentum is pz = (p1 + p2)z → ∞. In the IMF one builds a

nucleon state localized in the transverse plane at b⊥ = (x, y)

|pz, b⊥〉 =
∑

p
⊥

eip
⊥
·b⊥

√
V⊥

Ψ(p⊥)|pz, p⊥〉 . (6)

Then one finds that the transverse charge distribution of the nucleon wave

packet, see Fig. 2, is given by the two-dimensional Fourier transform of

form factors

〈pz, b⊥ = 0|j+ (b⊥) |pz, b⊥ = 0〉 = h+

∫

d2∆⊥

(2π)2
e−i∆⊥·b⊥F1

(

−∆2
⊥

)

+. . . .(7)

As previously one assumes a rather delocalized transverse momentum wave

function
∑

p
⊥

Ψ∗(p⊥ + ∆⊥/2)Ψ(p⊥ −∆⊥/2) ≈ 1. Thus, we can interpret

form factors as describing the transverse localization of partons in a fast

moving nucleon, irrespective of their longitudinal momenta and indepen-

dent on the resolution scale.

3. Parton densities

The deeply inelastic lepton-nucleon scattering `N → `′X probes, via the

amplitude

ANX =
1

Q2
Lµ(q)〈pX |jµ(0)|p〉 , (8)
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the nucleon with the resolution ~/Q ≈ (0.2 fm)/(Q in GeV), set by the

photon virtuality q2 ≡ −Q2. Recalling that the nucleon’s size is rN ∼ 1 fm,

one concludes that for Q2 of order of a few GeV, the photon penetrates

the nucleon interior and interacts with its constituents. The cross section

of the deeply inelastic scattering is related, by the optical theorem, to the

imaginary part of the forward Compton scattering amplitude

dσDIS

(

xB, Q2
)

∼
∑

X

|ANX |2 δ4(p + q − pX)

∼ 1

π
=m i

∫

d4z eiq·z〈p|T
{

j†µ(z)jµ(0)
}

|p〉 . (9)

The very intuitive parton interpretation has its clear-cut meaning in the

IMF. A typical interaction time of partons is inversely proportional to the

energy deficit of a given fluctuation of a particle with the energy E0 and

three-momentum p0 = (p⊥0, x0pz) into two partons with energies E1,2 and

three-momenta p1,2 = (p⊥1,2, x1,2pz). It scales, for pz →∞, as

∆t ∼ 1

∆E
=

1

E0 −E1 −E2
∼ pz

p2
⊥0/x0 − p2

⊥1/x1 − p2
⊥2/x2

→∞ . (10)

Therefore, one can treat partons as almost free in the IMF due to the

time dilation. The virtual photon “sees” nucleon’s constituents in a frozen

state during the time of transiting the target which is, thus, describable

by an instantaneous distribution of partons. Here again the analogy with

X-ray crystallography is quite instructive: Recall that an X-ray, scattered

off atoms, reveals crystal’s structure since rapid oscillations of atoms in the

lattice sites can be neglected. Atoms can be considered being at rest during

the time X-rays cross the crystal. The transverse distance probed by the

virtual photon in a Lorentz contracted hadron, is of order δz⊥ ∼ 1/Q, see

Fig. 2. One can conclude therefore that simultaneous scattering off an n-

parton cascade is suppressed by an extra power of
(

1/Q2
)n−1

. The leading

contribution to dσDIS is thus given by a handbag diagram, i.e., the photon–

single-quark Compton amplitude. The character of relevant distances in

the Compton amplitude (9) is a consequence of the Bjorken limit which

implies large Q2 (small distances) and energies ν ≡ p · q (small times) at

fixed xB ≡ Q2/(2ν). By going to the target rest frame one immediately

finds that at large Q2 the dominant contribution comes from the light-cone

distances z2 ≈ O
(

1/Q2
)

between the points of absorption and emission of

the virtual photon in (9) because z− ∼ 1/(MxB), z+ ∼ MxB/Q2.

Since the hard quark-photon subprocess occupies a very small space-

time volume but the scales involved in the formation of the nucleon are
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much larger, hence, they are uncorrelated and will not interfere. The quan-

tum mechanical incoherence of physics at different scales results into the

factorization property of the cross section (9),

dσDIS

(

xB, Q2
)

∼
∑

q

e2
q

∫ 1

0

dx δ (x− xB) fq

(

x; Q2
)

, (11)

where fq is a parton distribution, — the density of probability to find

partons of a given longitudinal momentum fraction x of the parent nucleon

with transverse resolution 1/Q,

〈p|q̄(0)γ+q(z−n)|p〉 = 2p+

∫ 1

0

dx
{

fq(x)e−ixz−p+ − f̄q(x)eixz−p+
}

. (12)

No information on the transverse position of partons is accessible here, Fig.

2.

4. Generalized parton distributions

Both observables addressed in the previous two sections give only one-

dimensional slices of the nucleon since only the magnitude of scattering

amplitudes is accessed in the processes but its phase is lost. These or-

thogonal spaces are probed simultaneously in generalized parton distribu-

tions (GPDs), which arise in the description of deeply virtual Compton

scattering (DVCS) `N → `′γ∗N → `′N ′γ in the Bjorken limit. In the

same spirit as in deeply inelastic scattering, the latter consists of sending

q2 ≡ (q1 + q2)
2/4 → −∞ to the deep Euclidean domain while keeping

∆2 ≡ (p2 − p1)
2 � −q2 small and ξ ≡ −q2/p · q fixed, p ≡ p1 + p2. By

the reasoning along the same line as in the previous section one finds that

the Compton amplitude factorizes into GPDs parametrizing the twist-two

light-ray operator matrix element

〈p2|q̄(−z−n)γ+q(z−n)|p1〉

=

∫ 1

−1

dxe−ixz−p+
{

h+ Hq(x, η, ∆2) + e+ Eq(x, η, ∆2)
}

, (13)

and a handbag coefficient function, so that one gets

ADVCS = ε∗µ(q2)Lν(q1)

∫

d4z eiq·z〈p2|T
{

j†µ(z/2)jν(−z/2)
}

|p1〉

∼
∑

q

e2
q

∫ 1

−1

dx
Fq(x, η, ∆2)

ξ − x− i0
, (14)



October 15, 2002 9:3 WSPC/Trim Size: 9in x 6in for Proceedings belitsky

7

x

y

z

b⊥

x

yγ ∗

γ

pz → ∞

δ z Q⊥ ~1

z

∆b⊥

∆b'⊥

Figure 3. Geometric picture of deeply virtual Compton scattering.

where Fq = Hq, Eq and the contribution from a crossed diagram is omit-

ted. GPDs depend on the s-channel momentum fraction x, measured with

respect to the momentum p, and t-channel fraction η ≡ q ·∆/q · p, which

is the longitudinal component of the momentum transfer ∆ ≈ ηp + ∆⊥,

as well as its square ∆2 ≈ −
(

∆2
⊥ + 4M2

Nη2
)

/
(

1− η2
)

. Due to the reality

of the final state photon η ≈ −ξ. A geometric picture underlying DVCS

is as follows, see Fig. 3. The electric field of lepton’s virtual fluctuation

` → `′γ∗ accelerates a quark localized in the transverse area (δz⊥)2 ∼ 1/Q2

at the impact parameter b⊥ and carrying a certain momentum fraction of

the parent nucleon. The accelerated parton tends to emit the energy via

electromagnetic radiation and fall back into the nucleon, see Fig. 3. The

incoming-outgoing nucleon system is localized at the center of coordinates

b⊥ = 0, however, due to non-zero longitudinal momentum exchange in the

t-channel the individual transverse localizations of incoming and outgoing

nucleons are shifted in the transverse plane by amountsa ∆b⊥ ∼ η(1+η)b⊥
and ∆b

′
⊥ ∼ η(1− η)b⊥, respectively 2.

Generally, GPDs are not probabilities rather they are the interference

of amplitudes of removing a parton with one momentum and inserting it

back with another. In the limit ∆ = 0 they reduce to inclusive parton

densities and acquire the probabilistic interpretation. This is exhibited

in a most straightforward way in the light-cone formalism 3, where one

easily identifies the regions −1 < x < −η and η < x < 1 with parton

densities while −η < x < η with distribution amplitudes. This latter

domain precludes the density interpretation for η 6= 0.

The first moment of GPDs turns into form factors

Eq.1).ThesecondmomentofEq. (13)givesformfactorsofthequarkenergy−

aNote the difference in the definition of our impact parameter space GPDs as compared
to Ref. 2. In our frame p⊥2 = −p⊥1 = ∆⊥/2. We define the Fourier transform with
respect to ∆⊥ which has its advantages that b⊥ does not depend implicitly on η.
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Figure 4. Left: Conventional setup for taking the holographic picture. Right: Nucleon
hologram with leptoproduction of a photon: interference of the Bethe-Heitler (reference)
and DVCS (sample) amplitudes.

momentumtensor,Θq
µν = q̄γ{µDν}q. Since gravity couples to matter via

Θµν = δ
δgµν

∫

d4x
√
−det gµν(x) L(x), these form factors are the ones of the

nucleon scattering in a weak gravitational field 4

〈p2|Θµν |p1〉 = A(∆2)h{µpν} + B(∆2)e{µpν} + C(∆2)∆µ∆ν . (15)

Analogously to the previously discussed electromagnetic case, the combi-

nation A(∆2) + ∆2/(4M2
N)B(∆2) arising in the Θ00 component measures

the mass distribution inside the nucleon 5. It is different from the charge

distribution due to presence of neutral constituents inside hadrons not ac-

counted in electromegnetic form factors. The gravitomagnetic form factor

A(∆2) + B(∆2) at zero recoil encodes information on the parton angular

momentum 4 ~J = 1
V

∫

d3~x [~x × ~Θ](x) expressed in terms of the momen-

tum flow operator Θ0i ≡ Θi in the nucleon and gives its distribution when

Fourier transformed to the coordinate space. These form factor are acces-

sible once GPDs are measured:
∫ 1

−1

dx x H(x, η, ∆2) = A(∆2) + η2C(∆2) ,

∫ 1

−1

dx x E(x, η, ∆2) = B(∆2)− η2C(∆2) . (16)

GPDs regain a probabilistic interpretation once one sets η = 0 but

∆⊥ 6= 0 6,7. When Fourier transformed to the impact parameter space they

give a very intuitive picture of measuring partons of momentum fraction

x at the impact parameter b⊥ with the resolution of order 1/Q set by the

photon virtuality in the localized nucleon state (6),

f(x, b⊥) =

∫

d2∆⊥

(2π)2
e−i∆⊥·b⊥H

(

x, 0,−∆2
⊥

)

. (17)
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To visualize it, see Fig. 2, one can stick to the Regge-motivated ansatz

H(x, 0,−∆2
⊥) ∼ x−αR(−∆

2
⊥

)(1− x)3 with a linear trajectory αR(−∆2
⊥) =

αR(0)− α′R∆2
⊥ where αR(0) ≈ 0.5 and α′ ≈ 1 GeV2.

5. Hard leptoproduction of real photon and lepton pair

The light-cone dominance in DVCS is a consequence of the external kine-

matical conditions on the process in the same way as in deeply inelastic

scattering. Therefore, one can expect precocious scaling starting as early

as at −q2 ∼ 1 GeV2. It is not the case for hard exclusive meson produc-

tion, giving access to GPDs as well, where it is the dynamical behavior of

the short-distance parton amplitude confined to a small transverse volume

near the light cone that drives the perturbative approach to the process.

Here the reliability of perturbative QCD predictions is postponed to larger

momentum transfer.

Although GPDs carry information on both longitudinal and transverse

degrees of freedom, their three-dimensional experimental exploration re-

quires a complete determination of the DVCS amplitude, i.e., its magni-

tude and phase. One way to measure the phase at a given spot is known

as holography, for visible light. This technology allows to make three-

dimensional photographs of objects, see Fig. 4: The laser beam splits into

two rays. One of them serves as a reference source and the other reflects

from the object’s surface. The reflected beam, which was in phase with

the reference beam before hitting the “target”, interferes with the refer-

ence beam and forms fringes on the plate with varying intensity depending

on the phase difference of both. (Unfortunately, the same method cannot

be used for X-ray holography of crystals and scattering experiments due

to the absence of practical “splitters”.) For the exclusive leptoproduction

of a photon, however, there are two contributions to the amplitude: the

DVCS one, ADVCS, we are interested in, and ABH from the ‘contaminating’

Bethe-Heitler (BH) process, in which the real photon spills off the scattered

lepton rather than the quark, see Fig. 4. The BH amplitude is completely

known since the only long-distance input turns out to be nucleon form

factors measured elsewhere. The relative phase of the amplitudes can be

measured by the interference of DVCS and BH amplitudes in the cross sec-

tion dσ`N→`′N ′γ ∼ |ADVCS + ABH|2 and, thus, the nucleon hologram can

be taken. The most straightforward extraction of the interference term is

achieved by making use of the opposite lepton charge conjugation prop-

erties of DVCS and BH amplitudes. The former is odd while the latter
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Figure 5. What is extractable from DVCS (left) and DVCS lepton pair production
(right).

is even under change of the lepton charge. The unpolarized beam charge

asymmetry gives

dσ`N→`′N ′γ(+e`)− dσ`N→`′N ′γ(−e`) = (ADVCS + A∗
DVCS) ABH

∼ <e

∫

Fq(x, ξ, ∆2)

ξ − x− i0
cosφ′γ

and measures the real part of the DVCS amplitude modulated by the har-

monics of the azimuthal angle between the lepton and photon scattering

planes φ′γ
8,9. If on top of the charge asymmetry one further forms ei-

ther beam or target polarization differences, this procedure would allow to

cleanly extract the imaginary part of the DVCS amplitude where GPDs en-

ter in diverse combinations. These rather involved measurements have not

yet been done. Luckily, since the ratio of BH to DVCS amplitude scales like

[∆2/q2
1(1−y)]1/2/y, for large y or small −∆2, it is safe to neglect |ADVCS|2

as compared to other terms. Thus, in such kinematical settings one has

access to the interference in single spin asymmetries,

dσ`N→`′N ′γ(+λ`)− dσ`N→`′N ′γ(−λ`) ≈ (ADVCS −A∗
DVCS) ABH

∼ =m

∫

Fq(x, ξ, ∆2)

ξ − x− i0
sin φ′γ

which measure GPDs directly on the line x = ξ as shown in Fig. 5. Exper-

imental measurements of these asymmetries were done by HERMES 11,13

and CLAS 12 collabarations. The comparison to current GPD models is

demonstrated in Fig. 6.

In order to go off the diagonal x = ξ one has to relax the real-

ity constraint on the outgoing γ-quantum, i.e., it has to be virtual and

fragment into a lepton pair L̄L with invariant mass q2
2 > 0. Thus, one

has to study the process `N → `′L̄LN ′. In these circumstances, the

skewedness parameter η independently varies for fixed Bjorken variable

since ξ ≈ −η(|q2
1 | − q2

2)/(|q2
1 | + q2

2), and one is able to scan the three-
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Figure 6. Beam spin asymmetry (a) in e+p→ e+pγ and unpolarized charge asymmetry
(b) from HERMES with E = 27.6 GeV are predicted making use of the complete twist-
three analysis for input GPDs from Ref. 8: model A without the D-term (solid) and
C with the D-term (dashed) in the Wandzura-Wilczek approximation 10 as well as the
model B with the D-term (dash-dotted) and included quark-gluon correlations. The
dotted lines on the left and right panels show 0.23 sinφ′γ and −0.05+0.11 cos φ′γ HERMES
fits, respectively. Note that a toy model for quark-gluon correlations while only slightly
changing the beam asymmetry, however, strongly alter the charge asymmetry.

dimensional shape of GPDs, see Fig. 5. Unfortunately, the cross section

for DVCS lepton pair production is suppressed by α2
em as compared to

DVCS and also suffers from resonance backgrounds 14.

Finally, perturbative next-to-leading (NLO) and higher-twist effects are

discussed briefly. Estimates of the former are, in general, model dependent.

NLO contributions to the hard-scattering amplitude 15 of a given quark

species are rather moderate, i.e., of the relative size of 20%, however, the

net result in the DVCS amplitude can be accidentally large 8,16. This

can be caused by a partial cancellation that occurs in tree amplitudes.

Evolution effects 17 in the flavor non-singlet sector are rather small. In

the case of gluonic GPD models we observed rather large NLO corrections

to the DVCS amplitude for the naive scale setting µ2
F = −q2

1
8. For such

models one also has rather strong evolution effects, which severely affect

LO analysis. However, one can tune the factorization scale µF so that to

get rid of these effects. The renormalon-motivated twist-four 18 and target

mass corrections 19 await their quantitative exploration.
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