RSS and SANE

Oscar A. Rondón
University of Virginia

Spin Structure at Long Distance
Jefferson Lab
March 12, 2009
Hall C 6 GeV Spin Structure Program

- Spin Structure Functions at 6 GeV:
 - Inclusive measurements
 - SSF's in the Nucleon Resonances Region – RSS - Published
 - Proton SSF at high Bjorken x – SANE - Completed
 - Precision Deuteron spin structure – g_1^d/F_1^d - Pending
 - Semi-inclusive measurements
 - Flavor Decomposition of Nucleon Spin – SemiSANE - Pending
- Real Polarized Photons:
 - Polarized Compton Scattering – Pending
- Four experiments rated A or A-
RSS - Resonances Spin Structure

Precision Measurement of the Nucleon Spin Structure Functions in the Region of the Nucleon Resonances

TJNAF E01-006

Spokesmen: Oscar A. Rondon (U. of Virginia) and Mark K. Jones (Jefferson Lab)

- Measure *proton* and *deuteron* spin asymmetries $A_1(W, Q^2)$ and $A_2(W, Q^2)$ at $Q^2 \approx 1.3 \text{ GeV}^2$ and $0.8 \leq W \leq 1.91 \text{ GeV}$

- Study W dependence of asymmetries, onset of polarized local duality, twist-3 effects, using inclusive polarized scattering
RSS Technique

- **Equipment: TJNAF Hall C**
 - CEBAF polarized electron beam
 - 5.755 GeV- 66 to 71% polarization
 - 2 cm diameter raster at target
 - $I = 85-150$ nA
 - Target: polarized ammonia NH_3, ND_3.
 - Luminosity $\sim 10^{35}$ s$^{-1}$cm$^{-2}$
 - HMS electron detector
- **Kinematics**
 - Final state mass range:
 - $0.8 \text{ GeV} \leq W \leq 1.91$ GeV
 - $<Q^2> = 1.28$ [GeV/c]2
Polarized Target

- Dynamic Nuclear Polarized ammonia (NH$_3$, $<P>$ ~ 70% in beam) and deuterated ammonia (ND$_3$, $<P>$ 20-30%)
 - Wide range of field orientations
- Target used in six experiments before SANE:
 - SLAC E143, E155, E155x (g_2)
 - JLab GEn98, GEn01, RSS
- Damaged coils successfully repaired in Nov. '08 by JLab staff with Oxford Inst. help
- Down but not out.
Measured asymmetries A_{\parallel}, A_{\perp}

$$A_{\parallel, \perp} = \left(\frac{\epsilon}{f P_b P_t C_N} + C_D \right) + A_{rc}$$

$$\epsilon = \frac{N^- - N^+}{N^- + N^+}$$

- $N^-, N^+ =$ charge normalized, dead time and pion corrected yields for +/- beam helicities
- $P_b, P_t =$ beam, target polarizations
- $f =$ dilution factor
- $C_N, C_D =$ polarized nucleons in $^{15,14}N$
 - proton $C_D = 0$, deuteron $C_N \approx 1$
- $A_{rc} =$ radiative correction

<table>
<thead>
<tr>
<th>Proton Elastic</th>
<th>G_E/G_M Sensitivity</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{\parallel}</td>
<td>Low</td>
<td>$P_b P_t$</td>
</tr>
<tr>
<td>A_{\perp}</td>
<td>High</td>
<td>G_E/G_M</td>
</tr>
</tbody>
</table>

![Graph showing data points and a trend line with a caption indicating the reference PRC 74, 035201 (2006).]
RSS goal: Spin Asymmetries A_1, A_2

- Combine A_{\parallel}, A_{\perp} to get virtual Compton absorption asymmetries:

 \[
 A_1 = \frac{1}{(E + E')D'} \left((E - E' \cos \theta)A_{\parallel} - \frac{E' \sin \theta}{\cos \phi} A_{\perp} \right)
 \]

 \[
 A_2 = \frac{\sqrt{Q^2}}{2ED'} \left(A_{\parallel} + \frac{E - E' \cos \theta}{E' \sin \theta \cos \phi} A_{\perp} \right)
 \]

- A_1, A_2 have minimal model dependence
 - $D'(E,E',\theta,R)$ is function only of kinematics and $R = \sigma_L/\sigma_T$
 - Proton R, F_1 from fit to Hall C $e-p$ data (E. Christy)
 - Deuteron R, F_1 from fit to world data (P. Bosted)
Fit A1 and A2 independently
 - Four Breit-Wigner resonance shapes plus DIS background
 - Reduced $\chi^2 = 1.2 - 1.4$ for 12 d.o.f.
 - PRL 98, 132003 (2007)
RSS Deuteron Spin Asymmetries

- Fit deuteron A_1 with three B-W resonances plus linear DIS
- Fit deuteron A_2 with constant: $A_2 = 0.083 \pm 0.017$
RSS Spin Structure Functions

- Use measured unpolarized F_1
- High precision, high resolution measurement
 - Extracting neutron SF's requires polarized proton smearing (Kulagin & Melnitchouk, PRC 77, 015210 (2008))

\[
g_1 = \frac{F_1}{1+\gamma^2} \left(A_1 + \gamma A_2 \right)
\]
\[
g_2 = \frac{F_1}{1+\gamma^2} \left(\frac{A_2}{\gamma} - A_1 \right); \quad \gamma = \frac{2 x M}{\sqrt{Q^2}}
\]
RSS goal Bloom-Gilman Local Duality for g_1^p

- Polarized (B-G) Local Duality: Ratio of integrals (at constant Q^2) = 1
 - g_1 fit over A_1 fit resonances
 - g_1 from PDF's evolved to same $\langle Q^2 \rangle = 1.28$ GeV2, with target mass corrections

- Polarized global duality seems to work above $Q^2 \approx 1.8$ GeV2
g_2 Spin Structure Functions

- First world data for $g_2^{p,d}$ in the resonances
- Clear higher-twist in $g_2^p(x > 0.4)$
- g_2^{ww} computed using RSS fit to g_1 point by point

$$g_2(x, Q^2) = g_2(x, Q^2) - g_2^{ww}(g_1(x, Q^2))$$

$$g_2^{ww}(x, Q^2) = -g_1(x, Q^2) + \int_x^1 dy \frac{g_1(y, Q^2)}{y}$$
Sum Rules

- First moment of g_1 (extended GDH or Ellis-Jaffe sum rule)

$$\bar{F}_1(Q^2) = \int_0^{1-\epsilon_l} g_1(x, Q^2) dx$$

$$= \frac{1}{36} ((a_8 + 3a_3)C_{NS} + 4a_0C_S)$$

arXiv:0812.00131
Sum Rules

- First moment of g_2 (Burkhardt-Cottingham S. R.)

$$\Gamma_2(Q^2) = \int_0^1 g_2(x, Q^2) \, dx = 0$$

- Free of QDC radiative and target mass corrections (Kodaira et al. PLB345(1995) 527)
 - RSS full (solid), measured (open)
 - Hall A E01—012 (very preliminary) \(E97-110, E94-010\)
 - SLAC E155x
 - (From K. Slifer)
Nachtmann moments and quark matrix elements

- Matrix elements representing interactions (higher twists) between quarks and gluons can be expanded in terms of Nachtmann moments
 - Free of target mass effects to $O(M^8/Q^8)$: dynamic higher twists can be extracted
 - Both g_1 and g_2 SSF's are needed: transverse asymmetry data (e.g. RSS, SANE)
 - Nachtmann moments reduce to conventional Cornwall-Norton (C-N) at high Q^2
 - Required at low momentum transfers: $Q^2 < \sim 5$ GeV2 and for the higher moments dominated by high x contributions: $d_2^{\text{Nacht.}}(Q^2)$, $a_2^{\text{Nacht.}}(Q^2)$

$$d_2^{\text{Nacht.}}(Q^2) = \int_0^1 dx \xi^2 \left(\frac{2 \xi}{x} g_1 + 3 \left(1 - \frac{\xi^2 M^2}{2 Q^2} \right) g_2 \right) \Rightarrow Q^2 \to \infty \int_0^1 dx x^2 (2 g_1 + 3 g_2)$$

$$a_2^{\text{Nacht.}}(Q^2) = 2 \int_0^1 dx \left(\frac{\xi^3}{x} \left[1 - \frac{9}{25} \frac{\xi^2 M^2}{Q^2} \right] g_1 - \frac{12}{5} \frac{x \xi M^2}{Q^2} g_2 \right) \Rightarrow Q^2 \to \infty 2 \int_0^1 dx x^2 g_1$$

$$\xi = 2 x / \left[1 + \sqrt{1 + (2 x M^2 / Q^2)} \right]$$

Twist-3 (proton)

- The twist-3 matrix element d_2 represents $q-g$ correlations

RSS inelastic ($0 < x <$ inelastic threshold); $\overline{d}_2(x<0.316) = 0$, extrapolated from data

$d_2^{C-N}(1.3 \text{ GeV}^2) = 0.0057 \pm 0.0013$ (published)

$d_2^{Nachtmann} = 0.0037 \pm 0.0010$ (total error): clean twist-3 to > 3 sigmas
Twist-3 (deuteron, etc.)

RSS inelastic (0 < \(x\) < inelastic threshold), \(\overline{d}_2 (x < 0.316) = 0\), extrapolated from data

Deuteron \(d_2^{C-N}\) = 0.0082 ± 0.0019 (all total errors)

Nachtmann \(d_2^{Nachtmann}\) = 0.0048 ± 0.0015: clean twist-3 to 3 sigmas

Neutron \(d_2^{Nachtmann}\) = 0.0015 ± 0.0019 **Non-Singlet** \(d_2^{Nachtmann}\) = 0.0022 ± 0.0026

Y. B. DONG

PHYSICAL REVIEW C 77, 015201 (2008)

FIG. 1. Ratio \(R(Q^2)\).
Credits

Analysis Team
- Karl Slifer
- Shigeyuki Tajima
- Frank Wesselmann
- Peter Bosted
- Eric Christy
- Paul McKee
- Hongguo Zhu
- Mark Jones
- Oscar Rondon

Special Thanks
- Don Crabb
- Donal Day
- Mahbub Khandaker
- Hamlet Mkrtchyan
- JLab Hall C
- JLab Target group
SANE
Spin Asymmetries on the Nucleon Experiment
(TJNAF E07-003)

SANE Collaboration
Argonne National Lab., Christopher Newport U., Florida International U.,
Hampton U., Jefferson Lab., U. of New Hampshire, Norfolk S. U.,
North Carolina A&T S. U., Mississippi S. U., Ohio U., IHEP - Protvino, U. of Regina,
Rensselaer Polytechnic I., Rutgers U., Seoul National U., Southern U. New Orleans,
Temple U., Tohoku U., U. of Virginia, Yerevan Physics I., Xavier U.

Spokespersons:
S. Choi (Seoul), M. Jones (JLab), Z-E. Meziani (Temple), O. A. Rondon (U. of Virginia)

- Measure **proton** spin structure function $g_2(x, Q^2)$ and spin asymmetry $A_1(x, Q^2)$ for $2.5 \leq Q^2 \leq 6.5$ GeV2 and $0.3 \leq x \leq 0.8$

- **SANE meets DOE 2011 Milestone for Proton Spin Structure**
SANE Physics

• Goal is to learn all we can about proton SSF's from an inclusive double polarization measurement:
 – twist-3 effects from moments of g_2 and g_1

 d_2 matrix element $= \int_0^1 x^2 (3 g_2 + 2 g_1) \, dx$

 – comparisons with Lattice QCD, QCD sum rules, bag models, chiral quarks
 – Study x dependence (test nucleon models) and Q^2 dependence (evolution)
 – Exploration of "high" x region: A_1's approach to $x = 1$
 – Test polarized local duality for final state mass $W > 1.4$ GeV

• Method:

 – Measure inclusive spin asymmetries for two orientations of target spin relative to beam helicity (anti-parallel and near-perpendicular)

 – Detect electrons with novel large solid angle electron telescope BETA
World data on A_\parallel, A_\perp and SANE kinematics

- Two beam energies: 5.9 GeV, 4.7 GeV
- Very good high x coverage with detector at 40°
SANE Layout

BETA (40°)

- BigCal w. Gain Monitor
- Lucite Hodoscope
- Gas Cherenkov
- Forward Hodoscope

HMS (15°-42°) calibrations, backgd.
- Polarized Target
- Target Beam position monitor
- Beam Line

B at 80° or 180°
Big Electron Telescope Array – BETA

- **BigCal** lead glass calorimeter: main detector used in *GEp-III*.
- Tracking **Lucite hodoscope**
- **Gas Cherenkov**: pion rejection
- Tracking fiber-on-scintillator **forward hodoscope**
- BETA's characteristics
 - Effective solid angle = 0.194 sr
 - Energy resolution 8%/√E(GeV)
 - 1000:1 pion rejection
 - Vertex resolution ~ 5 mm
 - Angular resolution ~ 1 mr
- Target field sweeps low E background
 - 180 MeV/c cutoff
Big Electron Telescope Array – BETA

- **BigCal** lead glass calorimeter: main detector used in *GEp-III*.
- Tracking **Lucite hodoscope**
- **Gas Cherenkov**: pion rejection
- Tracking fiber-on-scintillator **forward hodoscope**
- **BETA's characteristics**
 - Effective solid angle $= 0.194 \text{ sr}$
 - Energy resolution $8\%/\sqrt{E(\text{GeV})}$
 - 1000:1 pion rejection
 - Vertex resolution $\sim 5 \text{ mm}$
 - Angular resolution $\sim 1 \text{ mr}$
- **Target field sweeps low E background**
 - 180 MeV/c cutoff
SANE Expected Results (I)

- SANE expected statistical errors for \(\overline{d}_2 = \int_{x_{\text{min}}}^{x_{\text{max}}} x^2 (2g_1 + 3g_2) dx \)

<table>
<thead>
<tr>
<th>(Q^2)</th>
<th>(\Delta x) Proposal</th>
<th>(\Delta x) Projected</th>
<th>(\delta d_2/d_2) Proposal</th>
<th>(\delta d_2/d_2) Projected</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 - 3.5</td>
<td>0.29</td>
<td>0.85</td>
<td>0.29</td>
<td>0.71</td>
</tr>
<tr>
<td>3.5 - 6.5</td>
<td>0.41</td>
<td>0.96</td>
<td>0.41</td>
<td>0.84</td>
</tr>
</tbody>
</table>
SANE Expected Results (Ia)
SANE Expected Results (II)

- \(x \) dependence at constant \(Q^2 \) and \(Q^2 \) dependence at fixed \(x \) (illustrative binning only)

- data are concentrated in the region most sensitive to \(x^2 g_{2,1} \)
 - (estimates based on 75% beam and target polarization, and 85 nA beam current)
SANE Expected Results (III)

- Constrain extrapolations of A_1^p to $x = 1$ within +/- 0.1 (using duality)
- Both A_\parallel and A_\perp are required to get accurate, model-free A_1: $A_2 > 0$
- SANE's measured A_2 will contribute to improve world's A_1 data set
Beam Time

<table>
<thead>
<tr>
<th>Calibration Production</th>
<th>Energy (GeV)</th>
<th>(\theta_N)</th>
<th>Time (Proposal FOM h)</th>
<th>Proposal</th>
<th>Actual</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.4</td>
<td>off, 0, 180</td>
<td>47</td>
<td>25</td>
<td>53%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.7</td>
<td>180</td>
<td>70</td>
<td>20*</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.7</td>
<td>80</td>
<td>130</td>
<td>98</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.9</td>
<td>80</td>
<td>200</td>
<td>143</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.9</td>
<td>180</td>
<td>100</td>
<td>(\geq 35)</td>
<td>(\geq 35%)</td>
<td></td>
</tr>
</tbody>
</table>

Commissioning [calendar days] 14.0 99

Total [calendar days] 70.0 141

* At 30% efficiency until 3/16/09
Twist-3 operators

- The number of twist-3 operators increases with the order of the moment

- d_n notation is shorthand for

 $$\tilde{d}_n = \sum_i d_i^n(\mu^2) E_{i,3}^n(Q^2/\mu^2, \alpha_s(\mu^2))$$

 - d_i^n are the matrix elements, i is the spin index, n is the moment order
 - $E_{i,3}^n$ are twist-3 Wilson coefficients

- There is only one d_1^2, the one usually labeled d_2

- There are three $d_{i=1,2,3}^4$ operators associated with the fifth moment
 - with precise data are available over a wide range of Q^2 the evolution equations for the 5th. moments could be solved to extract these higher spin twist-3 matrix elements (Ji and Chou, PRD 42, 3637 (1990))
 - 5th. moment dominated by high x data: Nachtmann moments required
Twist-2 and Twist-4

- **TOP:**
 - Ratio of Nachtmann to CN moments of twist-2 a_2 matrix element: proton and deuteron sensitive to kinematic twists

- **BOTTOM**
 - Difference between the extracted values of the twist-4 f_2 matrix element using Nachtmann vs CN moments: twist-4 is insensitive to target mass
Twist-3 in g_2^p
Magnet Circuit Damage

- Diagnostics with the magnet cold indicated need to open it for repair.
- Extensive testing (B. Vulcan, J. Beaufait and others) found multiple burned out wires connecting sections of one of the main coils.
- A protection diode for one coil was also found to be broken.
Magnet Repairs

- Oxford specialist Paul Brodie and J. Beaufait reconnected wires with ~1" superconducting joints and ~3" copper to copper contacts
- Replacement diodes were mounted on circuit board
- Magnet operation after repairs is delicate, prone to quench
- Protection circuits working