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. Introduction

Ty

UVa Polarized Targets; Jlab, Fermilab

Electron beam polarized target experiments

Aim to create a controller capable of seeking/maintaining
ideal frequency for polarization

Increase the figure of merit (FOM) of DNP experiments

FOM =n, - f% - P?
n; = target thickness
f = dilution factor

P = polarization measured over time

P T,FOM1T
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Dynamic Nuclear Polarization (DNP)

Polarization: Alignment of the spin of particles in a given
direction (typically B,)

DNP: Transfer of electron spin polarization to the nucleus
Described by Solid Effect

Additional electrons are added when material doped with
beam irradiation

Signal picked up through NMR coil
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DNP
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Microwave Frequency

* Dictated by difference in nuclear Larmor and electron paramagnetic
resonance frequencies (EPR)

* [140.0 GHz —140.4 GHz for NH, @ 5T] / [69.7 GHz—70.1 GHz @ 2.5T]
for positive polarization

* [140.4 GHz—140.8 GHz for NH, @ 5T] / [70.1 GHz—70.5GHz @ 2.5T]
for negative polarization

=
a0 OD
P x4 ®a irradiated NHj
a a
g o - o
5 o9 o
o -]
W, g o
w_ -150
a =]
o
=300 2 g oo
| L | L L L 1
698 69.9 .o To.1 70.2 70.3 70.4

frequency [GHz)

Image: Riechert, H. (1983). Polarization Properties of irradiated
ammonia (NH3 and ND3) at 1K and 25 kG. AIP Conference
Proceedings 95, 520 .
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.
“Frequency Drift”

e Optimal frequency for positive and

negative polarization is not constant wsof-
mar = o"uu irradiated MNH3
E 1501 & . o
* Changes take place as more centers are § | o o
. . 1]
created in the material as a result of g ° Co
irradiation. B3 . o
=300 - Q 509
o ] T T TR T R T B T BT —y:
» Steady state of polarization at a particular e it o e e
mage: Riechert, RH. . Polarization Properties or Irradiated ammonia
freq u e ncy a ISO Vu I n e ra b I e to Othe r (NH3 and ND3) at 1K and 25 kG. AIP Conference Proceedings 95, 520 .

variables such as temperature, radiation
damage, number of anneals, etc.
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Frequency Drift”

Microwave Frequency (GHz)
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Maintaining Highest Polarization

* Manually maintaining optimal polarization is tedious, error prone

* |f characteristics of polarization growth/decay are understood, process
can be automated

* Input = EIO voltage divider value « p-wave frequency
* Qutput = Polarization value from NMR analysis software

Area vs. time: 140.553 GHz
Area vs. time: 140.213 GHz Area
Area
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R
Types of Motors

* Two motor types used with EIO

* Continuous DC motor

* Most common motor currently in use (standard)

* Shaft rotates continually whenever a voltage is applied
* Movements are not very precise

* Stepper motor

* Applying voltage causes the motor to “step” by a couple
degrees, and then stop

* Allows for much more controlled movements
* For continuous motion, a series of pulses is used

9/25/2016 10
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* Components
* Standard 2U Rack-mount hardware
* Parallax P8X32A microcontroller
* PL2303 USB to RS232 TTL serial communication
* Parallax 4x20 LCD display
* L298N H-Bridge motor controller

Features
* Front-panel readout and user interface
* Remote control support
* Automatic and manual control of motor
*  Works with different EIOs via calibration

|II

Required for use with “traditional” motor

Microcontroller
_ Interface

Data In

M.
00 -
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s Software controller
VUUUUUVV

For Polarized Drell-Yan experiment with Sea Quest (E1039)

* New hardware available from CPI: stepper motor and power supply

III

» Stepper motor: benefits over “traditional” motor
* Much more precise bellows position control
 Amount to move can be directly specified
e Controlled directly through RS232 serial
* EIO power supply is also controlled via serial
* System control via LabVIEW

* New software controlled microwave power supply
» Software controlled transmit/standby, power
e Software controlled cathode, anode and filament voltages
* Monitor cathode, anode and helix currents
* System control via LabVIEW

9/25/2016 12



Automation Control

* Must seek optimal microwave frequency
e Uses real-time polarization
* Change position or stay fixed
* Switch between positive and negative

* Must perform well given external variations
* Thermal fluctuations
* Beam trips
* Decay from beam irradiation

* Developed Monte Carlo for testing efficiency
and optimization under all these dynamics

9/25/2016 13



d% motor_contrallervi

LabVIEW Controller

»w| (1]

File Edit VYiew Project Operate

Tools  Window Help

Communication setup |

Manual motor control

Maotor information |

Metor alarm (error)

COM Port
% conM =

STOP COMMUNICATION ‘

Please wait after stopping
the VI: it can take some time
to shut down all the stuff
running in the background,
so please be patient.

Step size (rev)

Velocity (rev/sec)

Ea—

Frequency to seek (GHz)
10.000

Motor time (sec)
j—.ﬁ? -
Motor position (rev)
Frequency (calculated, GHz)
T

Alarm code

= See motor manual,

Enxﬂﬂ section

- "Troubleshooting”
for explanation of

alarm codes; fix the
problem first and
then restart this VI

STOP MOTOR

Frequency calibration

Automatic control |

Autemnatic mode on/off

Samples taken  Eventnum Polarization Rate
|0 |0 0 0
Data input file
I =
.

| Launch simulation |

Frequencyl Positionl

10100 |01 Slope

Frequency 2 Position 2
;j§140.150 0

Fit parameters

105

Intercept

| Calculate fit parameters

114015

Advanced configuration

m

Automatic step size (rev)

0.01

Automatic velocity (rev/sec)

s

{01

| Reseek (reset step size)

| Make up fit parameters




.
Seek Algorithm

Area vs. time

* Motion of the motor should be based on the
rate of polarization increase o

* An increase in the rate implies that the ?
motor is moving in the right direction; a
decrease implies that the motor should
return to a previous position

= 140.02 GHz

« 140.086 GHz

« 140.213 GHz

05

* Rates calculated using three (or more) data
points (pairs of polarization and time values)

* Calculate slope connecting adjacent data 200400 G080 1000
points, and then average rates:

: —— t(sec.)
1200 1400

P3_P2+P2_P1
3=t -4
2

rate =

* Averaging the rates gives better results
when the polarization experiences
fluctuations (due to thermal effects)

9/25/2016 15



.
Optimal vs Seeking Algorithm

 Efficiently automates the process of a person seeking the ideal frequency
* Accurately converges to ideal frequency relatively quickly (~5 minutes)
* Quick “ramp-ups” when starting from good frequency
* Plots below taken from a run of the LabVIEW stepper motor controller,
interfacing with simulation
* Results from standalone controller box should be similar (uses same seek algorithm)
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.
System Model

Behavior of ramp-up and decays are based on Differential Solid Effect

* Model for spin % from Leifson and Jeffries, 1961

» Set of coupled differential equations for nuclear (P,) and electron (P.,)
polarizations:

dPp, Te Ca CB Ca CB
Tfe—=|—-7c————|P+|—=—+—|P
€ dt < T 2 2)T\2 T2

dP, a f a p

* a and 8 are parameters corresponding to transitions (induced by
microwave), a drives negative while § drives positive for given
frequency

e (isthe ratio of electrons to nuclei
* Tie, T1y, and Py are constants

* General ‘reduced’ solution is of the form P,(t) = A + Be *1t 4+ De~F2t
9/25/2016 17



. Simulation

Ty

* Written in LabVIEW to work with stepper motor

e Can also be run by itself to produce data

* Implements model
e Parameters a and f calculated from frequency
* Uses experimental fit to steady state P,

Actual steady state vs fit

lLo0f

9/25/2016

Data from ramp up

15F

Caleulated @, 8 vs frequency

. L
140.8

18

140.2



LabVIEW Simulation

Hz simu

File E

Main simulation controls |

Manual controls |

Run script

Advanced data and controls

Simulation paused

-

Polarization
0.716477

Simulation enabled

@2

Frequency

Field (T)
140200 0 50

Time
1626

Dose

Data output file

Adjust the frequency or
step delay when there's
no maotor running
{simulation alone)

% Z:\FIO Controller Project;\Pre:entation\New presentation'Plot data', _@J

Polarization vs time
0.8+

Polarization

Lz = J
Command

pause

Run log

.Starting rampup 2t 140,20 GHz -

Set frequency to 140.200000 GHz
Set step delay to 10 ms

Run until time 1626

Pause simulation

Graph time scale | Graph polarization scale |

Time scale (minutes) Autoscale polarization

20

1 minute

5 minutes

10 minutes

30 minutes

Add 30 minutes

Alpha Randomness fraction

00159474 0.01

Feta The "randomness fraction” controls
11.60827 how much noise is added to the

polarization (as a fraction of the

Raw polarization current polarization; e.g. if the

10713024 polarization is 0.7 and the noise
fraction is 0,01, the resulting

Electron pol. polarization will be in the range
|-0.865115 0.6993-0.7007
Tin(s) Tle(s) e
{1500 0.03 10.000136073
Iterations per time step Start tirme
11000 (11:23:48 09:21

Script lines

e
TJ:O |prmt Starting rampup at 140,20 GHz

Script line to read
B




Single Exponential Approximation

* Fit experimental data to function of the

P (Area)

form P,(t) = P, + Ae ™!

* Full model contains two exponential
terms, one of which is very small

* Easier to analyze in this form

P
3
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1 ® .
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-3
0

Polarization Curves (April Cooldown)

N —

r r r r r

1000 2000 3000 4000 5000
time (sec.)

Polarization Curves (December Cooldown)

r r r r r

-20
0 1000 2000 3000 4000 5000

time (sec.)

9/25/2016

3 20
oo 15 | oe®
? R o 0 o0 ©
e e
Cl ) @ s ®
) [5) =
<0 e® (©) ® = 0 (©)
g 139/800 140000 140200 1400 140600 @800 141000 % 1401 1402 1403 f4g.4 01405 @lé0.® 140.7
® -10 G “¢°
2 ) 15 8
e
3 -20
Frequeny (GHz) Frequency (GHz)
GOrOO 70’00 80r00
A vs Frequency
A vs Frequency
0.012
° 0.004
001 () 0.0035 (0]
0.008 e 0.003
e
S 0006 oo | 3 0.0025 o °°,
z o S 0002 ° e -
0.004 e ~ 0.0015
0.001 e
°
0002 © %o 0.0005 = @0 © 00 o
oo Sole 0o o ®
139.800 140.000 140.200 140.400 140.600 140.800 141.000 1401 1402 1403 1404 1405 140.6
5000 7000 8000 Frequency (GHz) Frequency (GHz)
21

P vs Frequency

P vs Frequency

Growth/Decay Data — April and December “Cooldown”

140.7



Conclusion

* Two controller systems

» Standalone controller box supports continuous DC motors (self contained MC)
* LabVIEW controller supports stepper motors/power supply
* Both systems offer automatic and manual control of polarization experiments

* Simulation combines theoretical model and experimental data

* Determine aand f3
* Important to check the seeking algorithm

e Future plans
* Implement the simulation for spin 1 system
* Implement tools to control power supply
* Develop time-independent seeking algorithm
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Back up
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~Limitations

dP
a
* Fairly slow process, especially when far off of f,_,

. d _ _
s Time dependent:a(—e BH=et ‘ .
ot
* Frequently moves in wrong direction
* Rate is always decreasing in exponential growth/decay
Automated Ramp Up

Area vs. time 140290
teegss P 140200
~ 140180

I
g’ 140160

>

2
0 140140

5]
@ 140120
140100
140080
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200 400 600 800 1000 1200 tsec.) Time (sec.)
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. Time-independent Seek

VUUUUUUV

Peo
. . . . . . . 3
* Seeking frequency by maximizing |1 - Py, | would eliminate time-dependence ) S
Q,
* Unlike the raw rate of polarization increase, this quantity does not depend on time T 1 ® © e
= Q,
. . . <0 (o10) (] ®
* To calculate A requires the second derivative of B, (t): 3 _«Hag_som40,000140.200140.20.0140,60305_800141,ooo
2 0o
(]
_ _pn -3
P, (t) = —Ale At — 1= B, () Frequeny (GHz)
- P,/ (t)
By (t) = Ad%e™™ n
» Works well under perfect conditions, but thermal fluctuations make B,"'(t) very hard to calculate
accurately
* Time-dependent seek actually behaves better when fluctuations are present
A AP |A-Peo |
0.012 0.02 0.02
0.01
o 0.008 0.01 ? 0.015
L - £ o
: = 139,600 140,000 1404000 140,800 141,200 T 0.005
0.002 0.01
0 0
139.800140.000140.200140.400140.600140.800141.000 0.02 139.800140.000140.200140.400140.600140.800141.000
Frequency (GHz)
Frequency (GHz) Frequency (GHz)
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R
LabVIEW Controller

 Interfaces directly with motor over RS232
* No need for standalone controller box e~

File Edit View Project Operate Tools Window Help

@[]

Communica tion setup | Manual motor control | Motor information |

COM Port Step size (rev) Motor time (sec)

1% coms =l Jo1 Movewp | ]
[ Veloci Motor posit
et e b

1 Mave down 01

Please wait after stopping
the VI it can take some time Frequency to seek (GHz) Frequency (calculated, GHz)
the stuf

* Automatic and manual control — : mot

Frequency calibratien |
» Takes advantage of precise motor steps

Automatic mode on/off > s Onsp=

Frequency 2 Position 2

* Built-in experimental simulation for testing || weue s e w o B (oo fpn
0 o o 0 |

[ Calculate fit parameters

Data input file

e Data output during automatic mode

|% i‘ Advanced configuration
Automatic step size (rev)
fo.01
* Easy frequency calibration ' ‘ us———

Make up fit parameters

* Works only with stepper motor
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