Automated Microwave Frequency Control in Dynamic Nuclear Polarization Experiments

Darshana Perera, Ian Johnson, Dustin Keller

University of Virginia

22nd International Spin Symposium

September 25-30, 2016 at UIUC

Introduction

- UVa Polarized Targets; Jlab, Fermilab
- Electron beam polarized target experiments
- Aim to create a controller capable of seeking/maintaining ideal frequency for polarization
- Increase the figure of merit (FOM) of DNP experiments

 $FOM = n_t \cdot f^2 \cdot P^2$

- $n_t = target \ thickness$
- f = dilution factor
- P = polarization measured over time

P ↑, FOM ↑

Dynamic Nuclear Polarization (DNP)

- Polarization: Alignment of the spin of particles in a given direction (typically $\overrightarrow{B_o}$)
- DNP: Transfer of electron spin polarization to the nucleus
- Described by Solid Effect
- Additional electrons are added when material doped with beam irradiation
- Signal picked up through NMR coil

.6 Image: Maxwell, J.(2011). Probing Proton Spin Structure: A Measurement of - at Four- Momenentum Transfer of 2 to 6 GeV2. Retrieved from http://libra.virginia.edu/catalog/libra-oa:5202

9/25/2016

Microwave Frequency

- Dictated by difference in nuclear Larmor and electron paramagnetic resonance frequencies (EPR)
- [140.0 GHz 140.4 GHz for NH₃ @ 5T] / [69.7 GHz 70.1 GHz @ 2.5 T] for positive polarization
- [140.4 GHz 140.8 GHz for NH₃ @ 5T] / [70.1 GHz 70.5 GHz @ 2.5 T] for negative polarization

"Frequency Drift"

- Optimal frequency for positive and negative polarization is *not* constant
- Changes take place as more centers are created in the material as a result of irradiation.
- Steady state of polarization at a particular frequency also vulnerable to other variables such as temperature, radiation damage, number of anneals, etc.

Image: Riechert, H. (1983). Polarization Properties of irradiated ammonia (NH3 and ND3) at 1K and 25 kG. AIP Conference Proceedings 95, 520 .

"Frequency Drift"

Image: https://www.jlab.org/Hall-C/talks/01_22_10/maxwell.pdf

Optimal Negative µWave Frequency vs Dose Since Last Anneal

140.56 r

Maintaining Highest Polarization

- Manually maintaining optimal polarization is tedious, error prone
- If characteristics of polarization growth/decay are understood, process can be automated
 - Input = EIO voltage divider value $\propto \mu$ -wave frequency
 - Output = Polarization value from NMR analysis software

Types of Motors

- Two motor types used with EIO
- Continuous DC motor
 - Most common motor currently in use (standard)
 - Shaft rotates continually whenever a voltage is applied
 - Movements are not very precise
- Stepper motor
 - Applying voltage causes the motor to "step" by a couple degrees, and then stop
 - Allows for much more controlled movements
 - For continuous motion, a series of pulses is used

Standalone Controller (for standard motor)

- Built to replace traditional manual frequency adjustment
- Components
 - Standard 2U Rack-mount hardware
 - Parallax P8X32A microcontroller
 - PL2303 USB to RS232 TTL serial communication
 - Parallax 4x20 LCD display
 - L298N H-Bridge motor controller
- Features
 - Front-panel readout and user interface
 - Remote control support
 - Automatic and manual control of motor
 - Works with different EIOs via calibration
- Required for use with "traditional" motor

Software controller

For Polarized Drell-Yan experiment with Sea Quest (E1039)

- New hardware available from CPI: stepper motor and power supply
- Stepper motor: benefits over "traditional" motor
 - Much more precise bellows position control
 - Amount to move can be directly specified
 - Controlled directly through RS232 serial
 - EIO power supply is also controlled via serial
 - System control via LabVIEW
- New software controlled microwave power supply
 - Software controlled transmit/standby, power
 - Software controlled cathode, anode and filament voltages
 - Monitor cathode, anode and helix currents
 - System control via LabVIEW

Automation Control

- Must seek optimal microwave frequency
 - Uses real-time polarization
 - Change position or stay fixed
 - Switch between positive and negative
- Must perform well given external variations
 - Thermal fluctuations
 - Beam trips
 - Decay from beam irradiation
- Developed Monte Carlo for testing efficiency and optimization under all these dynamics

LabVIEW Controller

- Motion of the motor should be based on the rate of polarization increase
 - An increase in the rate implies that the motor is moving in the right direction; a decrease implies that the motor should return to a previous position
- Rates calculated using three (or more) data points (pairs of polarization and time values)
 - Calculate slope connecting adjacent data points, and then average rates:

$$rate = \frac{\frac{P_3 - P_2}{t_3 - t_2} + \frac{P_2 - P_1}{t_2 - t_1}}{2}$$

 Averaging the rates gives better results when the polarization experiences fluctuations (due to thermal effects)

Optimal vs Seeking Algorithm

- Efficiently automates the process of a person seeking the ideal frequency
- Accurately converges to ideal frequency relatively quickly (~5 minutes)
- Quick "ramp-ups" when starting from good frequency
- Plots below taken from a run of the LabVIEW stepper motor controller, interfacing with simulation
 - Results from standalone controller box should be similar (uses same seek algorithm)

Behavior of ramp-up and decays are based on Differential Solid Effect

- Model for spin ½ from Leifson and Jeffries, 1961
 - Set of coupled differential equations for nuclear (P_n) and electron (P_e) polarizations:

$$T_{1e}\frac{dP_n}{dt} = \left(-\frac{T_{1e}}{T_{1n}} - \frac{C\alpha}{2} - \frac{C\beta}{2}\right)P_n + \left(\frac{C\alpha}{2} + \frac{C\beta}{2}\right)P_e$$
$$T_{1e}\frac{dP_e}{dt} = \left(\frac{\alpha}{2} - \frac{\beta}{2}\right)P_n + \left(-1 - \frac{\alpha}{2} - \frac{\beta}{2}\right)P_e + P_0$$

- α and β are parameters corresponding to transitions (induced by microwave), α drives negative while β drives positive for given frequency
- *C* is the ratio of electrons to nuclei
- T_{1e} , T_{1n} , and P_0 are constants
- General 'reduced' solution is of the form $P_n(t) = A + Be^{-k_1t} + De^{-k_2t}$ 9/25/2016

Simulation

- Written in LabVIEW to work with stepper motor
 - Can also be run by itself to produce data
- Implements model
 - Parameters α and β calculated from frequency
 - Uses experimental fit to steady state P_n

9/25/2016

9/25/2016

Single Exponential Approximation

- Fit experimental data to function of the form $P_n(t) = P_{\infty} + Ae^{-\lambda t}$
 - Full model contains two exponential terms, one of which is very small
 - Easier to analyze in this form

Growth/Decay Data – April and December "Cooldown"

Conclusion

- Two controller systems
 - Standalone controller box supports continuous DC motors (self contained MC)
 - LabVIEW controller supports stepper motors/power supply
 - Both systems offer automatic and manual control of polarization experiments
- Simulation combines theoretical model and experimental data
 - Determine α and β
 - Important to check the seeking algorithm
- Future plans
 - Implement the simulation for spin 1 system
 - Implement tools to control power supply
 - Develop time-independent seeking algorithm

Back up

Limitations

- Fairly slow process, especially when far off of f_{ideal}
- Time *dependent*: $\frac{d}{dt}(-e^{-t}) = e^{-t}$
- Frequently moves in wrong direction
 - Rate is *always* decreasing in exponential growth/decay

Time-independent Seek

- Seeking frequency by maximizing $|\lambda \cdot P_{\infty}|$ would eliminate time-dependence
 - Unlike the raw rate of polarization increase, this quantity does not depend on time
- To calculate λ requires the second derivative of $P_n(t)$:

$$P'_n(t) = -A\lambda e^{-\lambda t}$$

$$P''_n(t) = A\lambda^2 e^{-\lambda t}$$

$$\lambda = \frac{-P_n''(t)}{P_n'(t)}$$

- Works well under perfect conditions, but thermal fluctuations make $P_n''(t)$ very hard to calculate accurately
- Time-dependent seek actually behaves better when fluctuations are present

LabVIEW Controller

- Interfaces directly with motor over RS232
 - No need for standalone controller box
- Features
 - Automatic and manual control
 - Takes advantage of precise motor steps
 - Built-in experimental simulation for testing
 - Data output during automatic mode
 - Easy frequency calibration
- Works only with stepper motor

le Edit View Brainst Operate	Tools Window Help		
In Edit View Project Operate	Tools Window Help		
			8
Communication setup COM Port COM Port COM COMMUNICATION Please wait after stopping the Vir (an take some time to shurt down all the stuff running in the background, so please be patient. Automatic	Manual motor control Step size (rev) 0.1 Velocity (rev/sec) 0.1 Frequency to seek (GHz) 0.000 Goto STOP MOTOR c control ode on/off	Motor information Motor information Motor file 67 0.1 Frequency (calculated, GHz) 140.200 Frequency 1 Position 1 10.100 0.1 Read Frequency 2 Position 2 10.100 0.2	Motor alarm (error) Alarm code See motor manual, section "Troubleshooting" for explanation of alarm codes; fix the problem first and then restart this VI
Samples taken Eventnum 0 0 Data input 9 Launch sir	Polarization Rate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Calculate fit parameters	Advanced configuration Advanted configuration Automatic step size (rev) 0.01 Automatic velocity (rev/sec) 0.1 Reseek (reset step size) Make up fit parameters