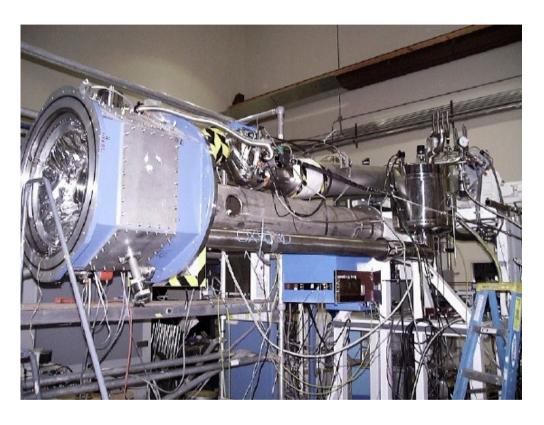


### **UVA Solid Polarized Targets**

### D. Keller UVA



### Outline


Introduction to The Target

The Modern Effort and Upcoming Experiments

A Couple of Example Projects

Conclusion

## What is a Polarized Target





- A marriage of sciences for the purpose of optimizing the over all figure of merit of Nuclear/Particle Spin Physics
- Use of high density, high polarizability, with high interaction rate in fixed target experiments



# A Bit of History

S. Bernstein Oakridge 53 Static

Overhauser Abragam Stat
Overhauser effect 1953
Electrons in metals (First DNP)

1958: First demonstration in 6LiF

• 1959: Many Substances ~20%

Abragam Borghini

First DNP Polarized Target (Saclay) 1962

Provotorov and Kozhushner Thermal Mixing 1961

- Lineshape Theory
- Full NMR picture
- Accurately Measure Polarization
- Leads to evolution of Solid-State NMR

Borghini

Jeffries
Abragam and Proctor

Solid Effect 1957 Electron to nuclear

- 1962: Jeffreis/Schmugge: First high polarization observed
- {Nd} LMN(24H2O) → Lanthanum Magnesium Nitrate
- Highest polarization ~70%
- Very narrow EPR line → Resolved Solid Effect
- Niinikoski NH3 ~90%, very cold, time
- Crabb over 90% at 1K

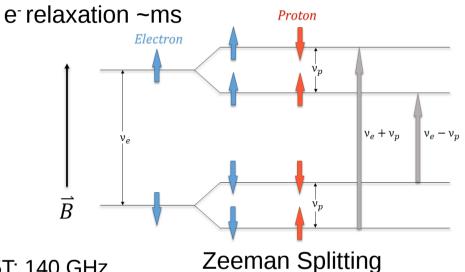
Spin-Temperature Theory 1968

- Bulk Spin dynamics
- Frozen organic liquids
- Materials studies



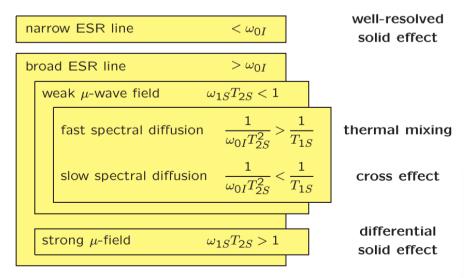
# The Dynamic Nuclear Polarized Target System

- -Evaporation Fridge: (e-beam: 1-100 nA)
  - -Dilution Fridge: (g-beam and charged low intensity)
- ~1035cm-2s-1

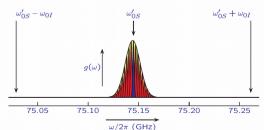

• Dilution factor 
$$f < 50\%$$
  $f = \frac{\text{\# of polarizable nuclei}}{\text{total \# of nuclei in target}}$ 

- DNP using Microwave to enhance polarization
- Cryogenic system (1.5-0.03 K)
- Material Specific to Experiment
- NMR Q-meter system for polarization data

$$FOM=n_tf^2P^2$$


## Dynamic Nuclear Polarization

Add Free Radicals, cool sample, RF-sample in B-field




2.5: 70 GHz

5T: 140 GHz



- $\omega_{\rm m} + 2\Delta$  $\omega_{1S} \cdot \mathbf{S} \cos \omega_{\mathbf{m}} t$ flip-flop rate diffusion rate  $\omega_{0I}T_{2S}^2$
- Transfer of spin polarization from electrons to nuclei
- Electrons 1K 2.5T ~92% Protons 1K 2.5T ~0.25%
- Narrow ESR width will help optimize



$$P = \frac{e^{\frac{\mu B}{kT}} - e^{\frac{-\mu B}{kT}}}{e^{\frac{\mu B}{kT}} + e^{\frac{-\mu B}{kT}}} = \tanh\left(\frac{\mu B}{kT}\right)$$

### **DNP-Process**

- Add Free Radicals
- Cool sample
- RF in B-Field



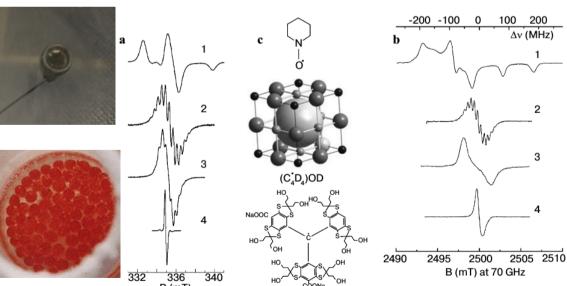



Fig. 6. X-band (a) and V-band (b) ESR spectra of TEMPO-doped d-butanol (1), irradiated <sup>6</sup>LiD (2), irradiated d-butanol (3), and trityl-doped d-propanediol (4). c Corresponding radicals.

DPPH PAC **BPA** Shape BPA Violanthrene Porphyrexide **TEMPO** Ziegler Anthracene Na+ TMR PΒ PR TMPD Tri-tetra-bythlphenyl Tetramethyl 1,3 cyclobutadien **DTBM** etc.

BPA + DPPH

BPA + Cob. Oleale

Ziegler + DPPH

Ziegler + Cob. Oleale

Ziegler + BPA

etc.

neutron irradiation

60Co-y irradiation

y - irradiation

Y - irradiation

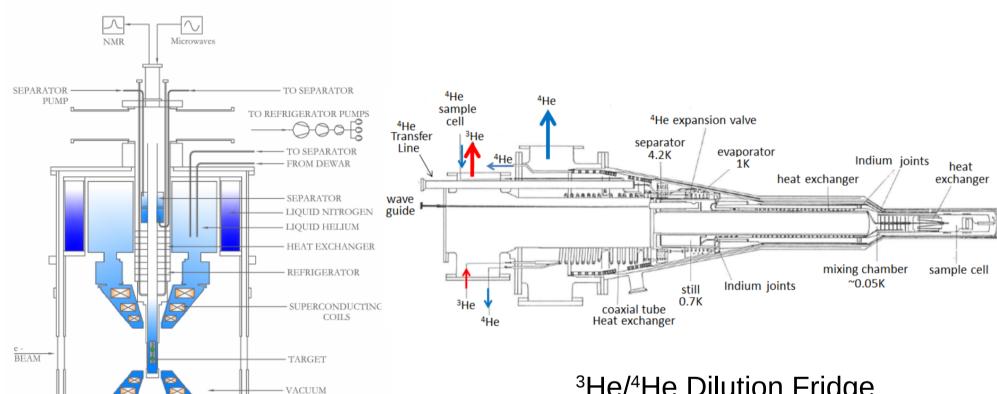
TEMPO

Porphyreside

PDBA

EDBA




#### Warm Irradiation

- NIST (10<sup>17</sup> e-/cm<sup>2</sup>)
- MIRF 14 MeV 10µA
- under LAr bath (~87K)
- Store in LN<sub>2</sub>

## General DNP System



# Cryogenic Systems



### <sup>4</sup>He Evaporation Fridge

- Charged beam up to 100nA
- Relaxation Rate (20-30 min.)
- Cooling Power (1W @ 1K)
- Run at around 80-90% p and 25-45% d

#### Clas12/HallA-C/SoLID/DY

### <sup>3</sup>He/<sup>4</sup>He Dilution Fridge

- Photon beam or low intensity charge beam
- Relaxation Rate (500 hours)
- Cooling Power (5-10µW @ 30-50mK)
- Run at around 90-95% p 70-75% d

#### TUNL/Frost/GlueX/HD-Ice

### What We Have at UVA

Much older equipment in need of repairs and maintenance

**UVA Polarized Target System** 

Microwave
Target Insert
Pumps
Two Parallel
2063H 63 m³/Hour

ROOTS: 600 m<sup>3</sup>/Hour

ROOTS: Two Parallel 2000 m<sup>3</sup>/Hour

1W (~0.121 Torr)

Magnet



Lab B28



Lab B17

## Some Spin Physics Projects

- ORNL: DNP proton crystallography with a neutron beam at Spallation Neutron Source (DNP-SNS)
- LHCb: QCD-spin physics in nucleon structure and hadron spectroscopy (SMOG, LHC-SPIN)
- Fermilab: New spin physics program with polarized target and liquefier (E906, E1027, E1039)
- HIGS-TUNL: Spin physics program at Duke with polarized beam and soon polarized target (P-12-16, P-20-09)
- Next Gen HIGS: New design with higher energy and intensity with an active polarized target (HIGS2)
- NIST: Scattering production of paramagnetic complex and target sample experiments (NIST-PTexp)

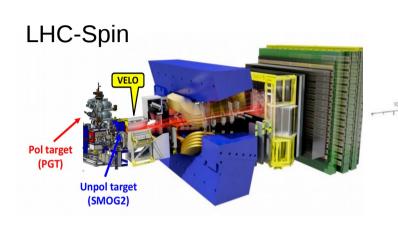
## JLAB Experiments

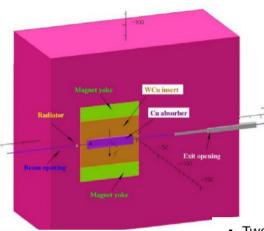
#### Hall A

```
(E12-11-108) SIDIS with transversely polarized proton target (E12-11-108A) Target single spin asymmetries using SoLID (LOI-12-16-004) Timelike Compton Scattering with SoLID
```

#### • Hall B

```
(E12-06-109) Longitudinal spin structure of the nucleon
(E12-07-107) Spin-Orbit Correlations with a longitudinally PT
(E12-09-009) Spin-Orbit Correlations in kaon electroproduction in DIS
(E12-12-001) EMC effect in spin structure functions
(C12-15-004) DVCS on the neutron with a longitudinally PT
(C12-11-111) SIDIS on a transversely polarized target
(C12-12-009) Di-hadron production in SIDIS on transversely PT
(C12-12-010) DVCS on a transversely polarized target in CLAS12
```


#### Hall C


```
(E12-14-006) Helicity correlations in wide-angle Compton scattering (E12-17-008) Polarized Observables in WACS (C12-13-011) The deuteron tensor structure function b1 (C12-15-005) Tensor Asymmetry in the x<1 Quasielastic Region (C12-18-005) Timelike Compton Scattering with T-PT at 11 GeV (LOI-12-14-001) Search for exotic gluonic states in the nucleus
```

#### • Hall D

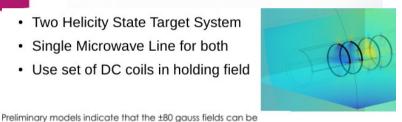
```
(LOI-12-15-001) Physics Opportunities with Secondary KL beam at JLAB (LOI12-16-005) Target Helicity Correlations in GlueX
```

# Quick Look at Some Projects

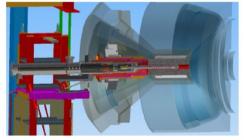


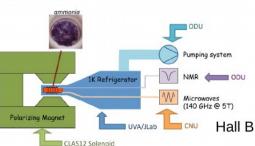


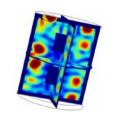
CPS




· Two Helicity State Target System

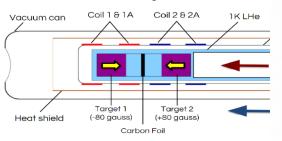

· Single Microwave Line for both

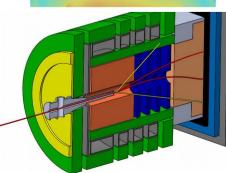

· Use set of DC coils in holding field

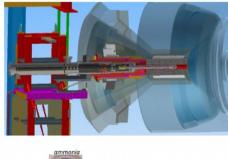

generated with 2-3 layers of 0.14 mm superconductor at <5 amps.



The CLAS12 Polarized Target




**COMSOL Multiphysics** Simulation Software

- · Two Helicity State Target Sys
- · Single Microwave Line
- · Use set of DC coils in holding field







### Recent Solicitations

- Erhard Steffens, Cern LHC-Spin (Physics, Target)
- Michael Snow, Indian University NOPTREX (Target)
- Yuji Goto, RIKEN RCNP (Physics, Target)
- Will Brooks, UTFSM PT (Physics, Target)
- Oleg Denisov, Cern Compass (Target)
- Zia Ashkenazi, Tel Aviv University IsoDar2 (Target)

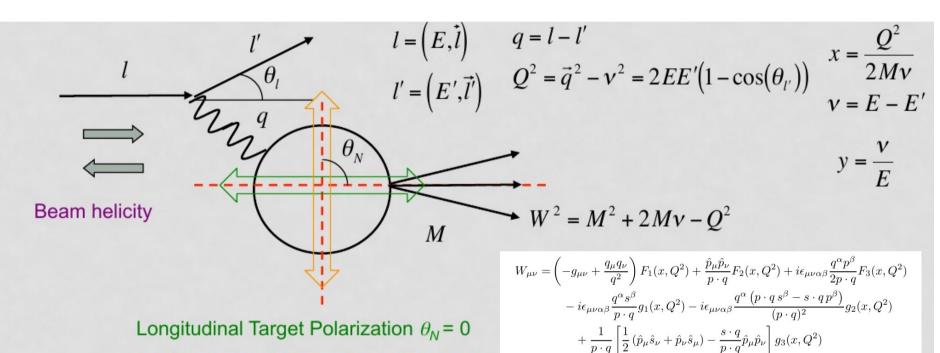
## How to do all this work?

### How to do all this work?

We are supposed to be a big group

## How to do all this work?

We are supposed to be a big group


- Lead
  - Scientist
  - 2 postdocs
  - PT Tech
  - Grad students

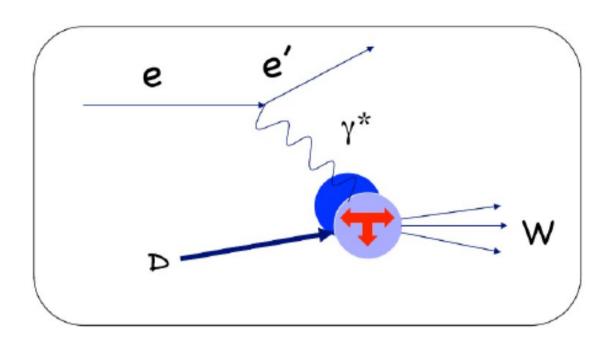
# Couple of Examples

# b<sub>1</sub>-Structure Function



## Polarized DIS




 $+\frac{s\cdot q}{p\cdot q}\left[\frac{\hat{p}_{\mu}\hat{p}_{\nu}}{p\cdot q}g_4(x,Q^2)+\left(-g_{\mu\nu}+\frac{q_{\mu}q_{\nu}}{a^2}\right)g_5(x,Q^2)\right],$ 

Asymmetries in the scattering of polarized leptons on polarized nucleons most sensitive to spin structure functions  $g_1$  and  $g_2$ 

Transverse Target Polarization  $\theta_N = \pi/2$ 

$$\frac{d^2\sigma^{\uparrow\uparrow(\downarrow)}}{d\Omega dE'} = \frac{d^2\sigma}{d\Omega dE'} - (+) \frac{2\alpha^2 E'}{Q^2 E} \left( \frac{E + E'\cos\theta}{Mv} g_1(x, Q^2) - \frac{Q^2}{Mv^2} g_2(x, Q^2) \right)$$

## Novel Targets for Novel Physics



 $W_{\mu\nu} = -F_1 g_{\mu\nu} + F_2 \frac{P_{\mu}P_{\nu}}{\Gamma}$ 

 $+i\frac{g_1}{\nu}\epsilon_{\mu\nu\lambda\sigma}q^{\lambda}s^{\sigma}+i\frac{g_2}{\nu^2}\epsilon_{\mu\nu\lambda\sigma}q^{\lambda}(p\cdot qs^{\sigma}-s\cdot qp^{\sigma})$  $-b_1 r_{\mu\nu} + \frac{1}{6} b_2 (s_{\mu\nu} + t_{\mu\nu} + u_{\mu\nu})$ 

 $+\frac{1}{2}b_3(s_{\mu\nu}-u_{\mu\nu})+\frac{1}{2}b_4(s_{\mu\nu}-t_{\mu\nu})$ 

Construct the most general Tensor W consistent with Lorentz and gauge invariance

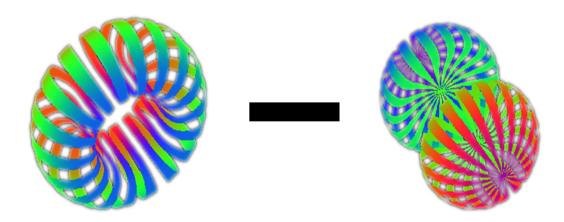
Frankfurt & Strikman (1983) Hoodbhoy, Jaffe, Manohar (1989)

Nucleon Deuteron 
$$F_{1} = \frac{1}{2} \sum_{q} e_{q}^{2} \left[ q_{\uparrow}^{\frac{1}{2}} + q_{\uparrow}^{-\frac{1}{2}} \right] = \frac{1}{3} \sum_{q} e_{q}^{2} \left[ q_{\uparrow}^{1} + q_{\uparrow}^{-1} + q_{\uparrow}^{0} \right]$$

$$g_{1} = \frac{1}{2} \sum_{q} e_{q}^{2} \left[ q_{\uparrow}^{\frac{1}{2}} - q_{\downarrow}^{\frac{1}{2}} \right] = \frac{1}{2} \sum_{q} e_{q}^{2} \left[ q_{\uparrow}^{1} - q_{\downarrow}^{1} \right]$$

$$b_{1} = - \frac{1}{2} \sum_{q} e_{q}^{2} \left[ 2q_{\uparrow}^{0} - (q_{\uparrow}^{1} + q_{\uparrow}^{-1}) \right]$$

- Tensor Polarization

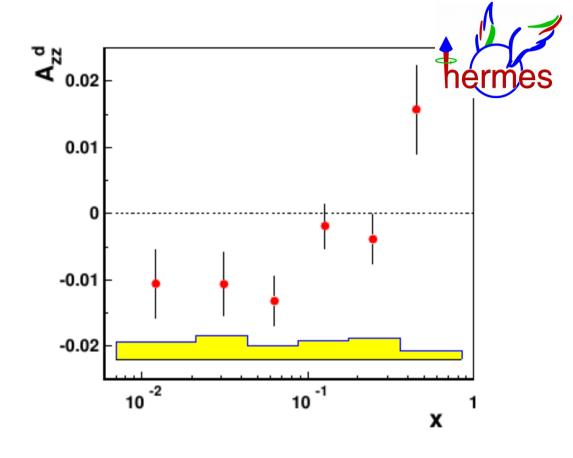

## Probing Polarization of Partons

Resulting in the spin structure observed in the nuclear spin

 $q^o$ : Probability to scatter from a quark (any flavor) carrying momentum fraction x while the *Deuteron* is in state m=0

 $q^1$ : Probability to scatter from a quark (any flavor) carrying momentum fraction x while the *Deuteron* is in state |m| = 1

$$b_1(x) = \frac{q^0(x) - q^1(x)}{2}$$




## Extraction of Observable

$$A_{zz} = \frac{2}{f P_{zz}} \frac{\sigma_{\dagger} - \sigma_{0}}{\sigma_{0}}$$

$$= \frac{2}{f P_{zz}} \left( \frac{N_{\dagger}}{N_0} - 1 \right)$$

$$T = \frac{N_T}{R_T} = \frac{16}{P_{zz}^2 f^2 \delta A_{zz}^2 R_T}$$



Atomic-gas target

 $\sigma_{\dagger}$  : Tensor Polarized cross-section

 $\sigma_0$  : Unpolarized cross-section

 $P_{zz}$ : Tensor Polarization

|                    | Hermes    | JLAB      |
|--------------------|-----------|-----------|
| $P_{zz}$           | 0.8       | 0.2       |
| Dilution           | 0.9       | 0.30      |
| $L(cm^{-2}s^{-1})$ | $10^{31}$ | $10^{35}$ |

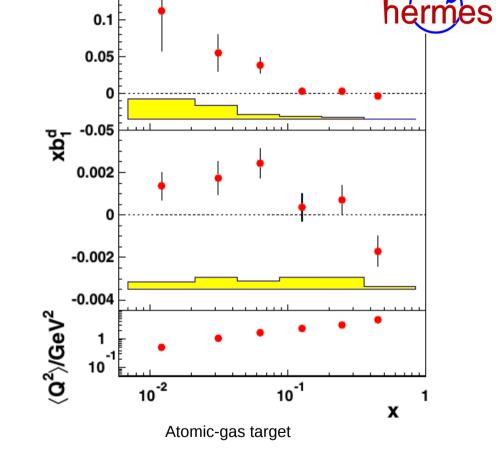
$$b_1 = -\frac{3}{2}F_1^d A_{zz}$$

## Extraction of Observable

 $\mathbf{p}_{\mathbf{q}}^{\mathbf{d}}$ 

0.15

$$A_{zz} = \frac{2}{f P_{zz}} \frac{\sigma_{\dagger} - \sigma_0}{\sigma_0}$$


$$= \frac{2}{f P_{zz}} \left( \frac{N_{\dagger}}{N_0} - 1 \right)$$

$$T = \frac{N_T}{R_T} = \frac{16}{P_{zz}^2 f^2 \delta A_{zz}^2 R_T}$$

 $\sigma_{\dagger}$  : Tensor Polarized cross-section

 $\sigma_0$  : Unpolarized cross-section

 $P_{zz}$ : Tensor Polarization



$$\begin{array}{c|ccc} & \text{Hermes} & \text{JLAB} \\ \hline P_{zz} & 0.8 & 0.2 \\ \text{Dilution} & 0.9 & 0.30 \\ L(cm^{-2}s^{-1}) & 10^{31} & 10^{35} \\ \hline \end{array}$$

$$b_1 = -\frac{3}{2} F_1^d A_{zz}$$

## Very Unexpected Result

$$\int b_1(x)dx = 0$$

if the sea quark tensor polarization vanishes

$$\int_{0.0002}^{0.85} b_1(x)dx = 0.0105 \pm 0.0034 \pm 0.0035$$

#### Efremov and Teryaev (1982, 1999)

Gluons (spin 1) contribute to both moments

Quarks satisfy the first moment, but

Gluons may have a non-zero first moment!

2<sup>nd</sup> moment more likely to be satisfied experimentally since the collective glue is suppessed compared to the sea

Study of b<sub>1</sub> allows to discriminate between deuteron components with different spins (quarks vs gluons)



no conventional nuclear mechanism can reproduce the Hermes data

# Systematics

#### Charge Determination

< 2 x 10<sup>-4</sup>, mitigated by thermal isolation of BCMs and addition of 1 kW Faraday cup

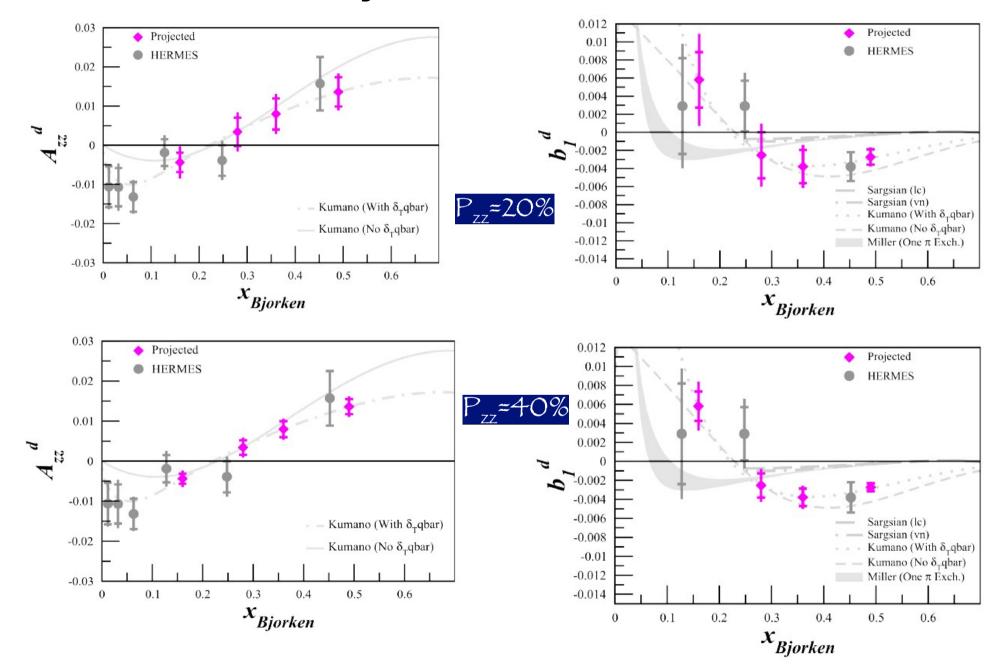
#### Luminosity

 $< 1 \times 10^{-4}$ , monitored by Hall C lumi

Target dilution and length step like changes observable in polarimetry < 1 x 10<sup>-4</sup>

#### Beam Position Drift effect on Acceptance

 $< 1 \times 10^{-4}$  (we can control the beam to 0.1 mm, raster over 2cm diameter)


#### Effect of using polarized beam

 $< 2.2 \times 10^{-5}$ , using parity feedback

Impact on the observable

$$\delta A_{zz} = \pm \frac{2}{f P_{zz} \sqrt{N_{cycles}}} \delta \xi$$

## Projected Results



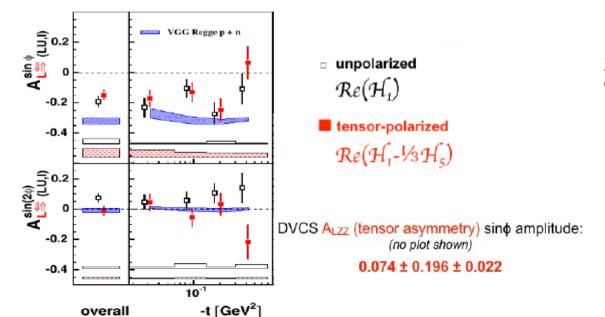
### **PAC Conditions**

Scientific Rating: A-

Recommendation: Conditional Approval (C1)

- E12-13-011 (The Deuteron Tensor Structure Function b1)
- E12-15-005 (Tensor Asymmetry in Quasielastic Region)

#### Issues:

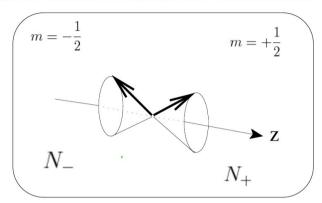

In order to obtain conclusive data with sufficient precision it is crucial to achieve a tensor polarization significantly higher than the value of 20% assumed in the proposal. While methods such as RF- "hole burning" are known to increase the tensor polarization above the thermal equilibrium value, these techniques including the polarization measurement have to be developed further to allow for a reliable operation under experimental conditions.

#### Conditions:

The experiment is conditionally approved with the condition that a tensor polarization of at least 30% be achieved and reliably demonstrated under experimental conditions.

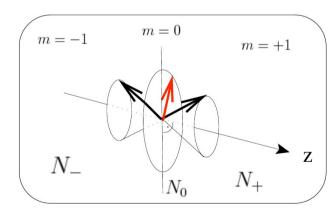
## Other Possible Projects

 Spin-1 SIDIS, Spin-1 DVCS, Spin-1 TCS, photodisintegration T20, T21, T20, Unnatural Parity exchange, Polarized gluons in the nucleon, tensor polarized meson photoproduction, gluon transversity, ...




$$\begin{split} \frac{d\sigma}{d\Omega} &= \frac{d\sigma_0}{d\Omega} \{1 - \sqrt{3/4} P_z \sin \theta_{d\gamma} \sin \phi T_{11} \left(\theta_p^{cm}\right) \\ &+ \sqrt{1/2} P_{zz} [(3/2 \cos^2 \theta_{d\gamma} - 1/2) T_{20} \left(\theta_p^{cm}\right) \\ &- (\sqrt{3/8} \sin 2\theta_{d\gamma} \cos \phi T_{21} \left(\theta_p^{cm}\right) \\ &+ (\sqrt{3/8} \sin^2 \theta_{d\gamma} \cos 2\phi T_{22} \left(\theta_p^{cm}\right)] \}, \end{split}$$

 $C_{BT}^{21}, C_{BT}^{20}$ 


## **Tensor Polarization**

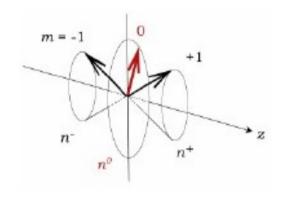
Spin-1/2 system in B-field leads to 2 sublevels due to Zeeman interaction



$$P_z = \frac{N_+ - N_-}{N_+ + N_-}$$



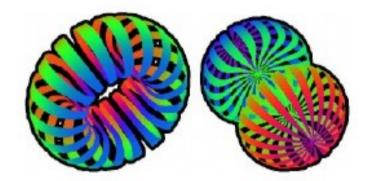



$$P_z = \frac{N_+ - N_-}{N_+ + N_-}$$

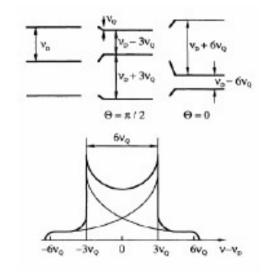
$$P_{zz} = \frac{(N_{+} - N_{0}) - (N_{0} - N_{-})}{N_{+} + N_{0} + N_{-}} = \frac{(N_{+} + N_{-}) - 2N_{0}}{N_{+} + N_{0} + N_{-}}$$

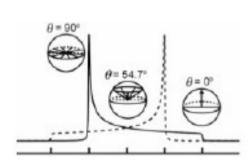
For Spin-1 Target

- Three magnetic sublevels
- Two transitions  $+1 \rightarrow 0$  and  $0 \rightarrow -1$
- Deuteron electric dipole moment eQ
- Interaction with electric field gradient


## Novel Targets for Novel Physics



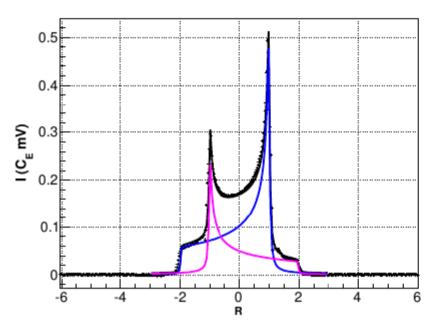

$$P = \frac{n_+ - n_-}{n_+ + n_- + n_0} \quad (-1 < P_z < 1)$$

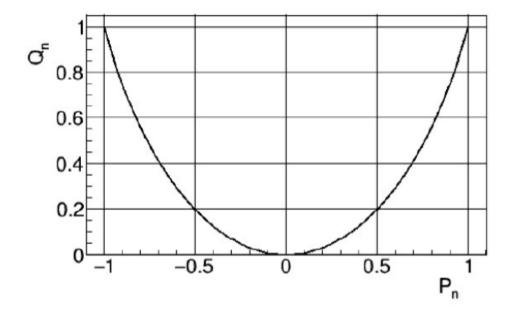

$$P_{zz} = \frac{n_+ - 2n_0 + n_-}{n_+ + n_- + n_0}$$
  $(-2 < P_{zz} < 1)$ 

- Using Spin-1 (ND<sub>3</sub>) Target
- Three Magnetic substates (+1,0,-1)
- Two Transitions  $(+1 \rightarrow 0)$  and  $(0 \rightarrow -1)$
- Deuterons electric quadrupole moment εQ
- Interacts with electric field gradients within lattice



Densities of the deuteron in its two spin projections  $I_z = 0$  and  $I_z = 1$ 




## Options of Enhancement

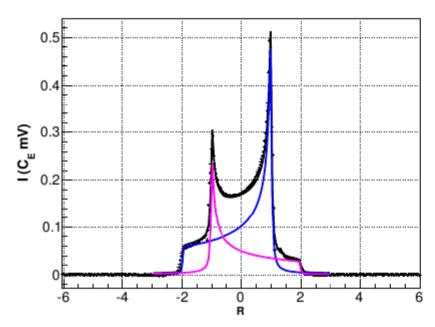
- Increase the B-Field
- Manipulate using AFP
- Additional Microwave Sources
- Different Materials
- RF CW-NMR Manipulation

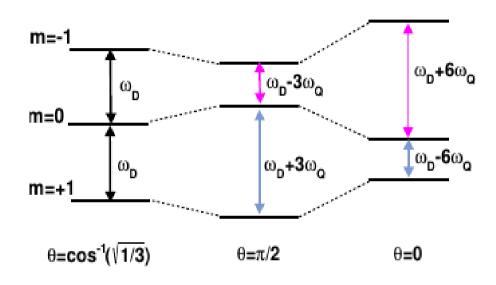
## Natural Equilibrium Polarization





$$R = \frac{\omega - \omega_d}{3\omega_q}$$


$$P_{n} = \frac{2\hbar}{g^{2}\mu_{N}^{2}\pi N} \int_{-\infty}^{\infty} \frac{3\omega_{Q}\omega_{D}}{3R\omega_{Q} + \omega_{D}} \chi''(R) dR$$
$$= \frac{1}{C_{E}} \int_{-\infty}^{\infty} I_{+}(R) + I_{-}(R) dR,$$


$$Q_n = (I_+ - I_-)/C_E$$

$$Q_n = 2 - \sqrt{4 - 3P_n^2}$$

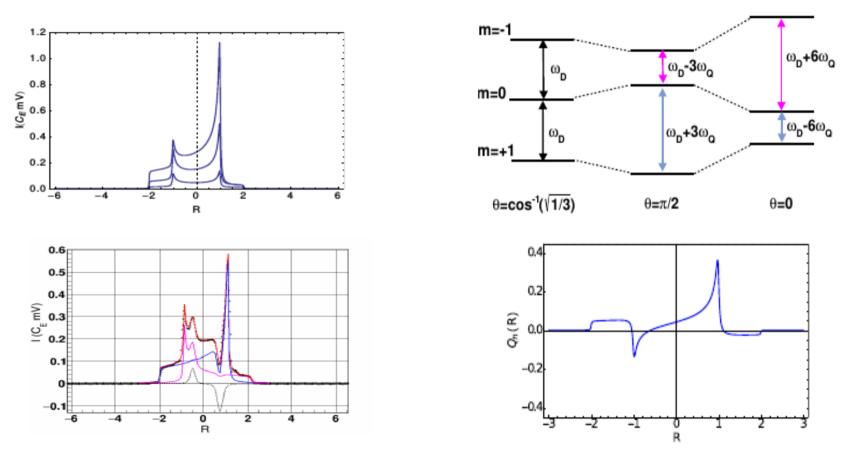
- Under Boltzmann equilibrium the relationship between vector and tensor polarization always exists
- Under this same condition the Height of each peak maintains a relationship to each other that contains all polarization information
- The ratio of the peak intensities can be used to calculate relative population in each magnetic sub-level

## Natural Equilibrium Polarization



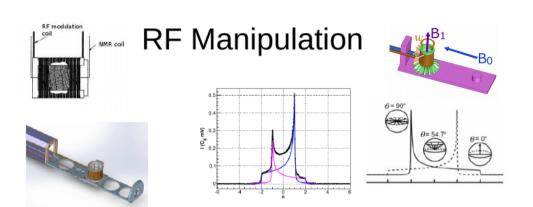


$$R = \frac{\omega - \omega_d}{3\omega_q}$$


$$P_{n} = \frac{2\hbar}{g^{2}\mu_{N}^{2}\pi N} \int_{-\infty}^{\infty} \frac{3\omega_{Q}\omega_{D}}{3R\omega_{Q} + \omega_{D}} \chi''(R) dR$$
$$= \frac{1}{C_{E}} \int_{-\infty}^{\infty} I_{+}(R) + I_{-}(R) dR,$$

$$Q_n = (I_+ - I_-)/C_E$$
  
=  $(a_+ - a_0) - (a_0 - a_-)$ 

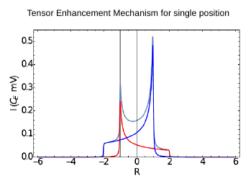
$$Q_n = 2 - \sqrt{4 - 3P_n^2}$$


- Under Boltzmann equilibrium the relationship between vector and tensor polarization always exists
- Under this same condition the Height of each peak maintains a relationship to each other that contains all polarization information
- The ratio of the peak intensities can be used to calculate relative population in each magnetic sub-level

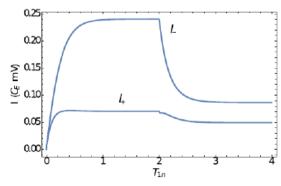
## Selective Semi-saturation



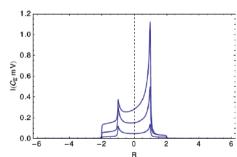
- Selective RF manipulation of the CW-NMR line
- Enhanced by mitigating the amplitudes below zero
- Can be implemented in parallel to DNP


## Novel Targets for Novel Physics

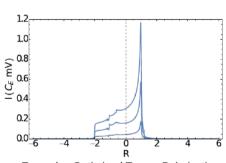



- RF irradiation at the Larmor frequency induces transitions between m=0 and other energy levels
- RF induced transitions at a single  $\theta$  has a resulting effect on two positions in the line R and -R through conservation of energy
- This can be implemented to shrink one transition lines area and enhancing the other resulting in tensor polarization manipulation

- · Study Optimization Analytically
- Develop Simulated Lineshape under RF
  - Empirical info from RF-power profile and Spectral diffusion
  - Rate Eq for overlap ratio
  - Generate theoretical lineshape manipulated by RF
- Develop fitting procedure for measurement
  - Unique constraints for overlapping regions are provided by MC
  - Fit semi-saturated (optimized d-Ammonia)
  - Test measurements with specialized NMR and scattering experiments
- Further Optimized Enhancement
  - Slow Perpendicular Rotation with semi-saturating RF
  - Heavily Reliant on MC for measurements
  - Tested with d-but. but not yet for ammonia

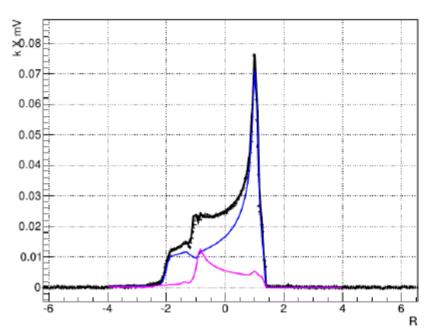

#### **Novel Tensor Enhanced Target**



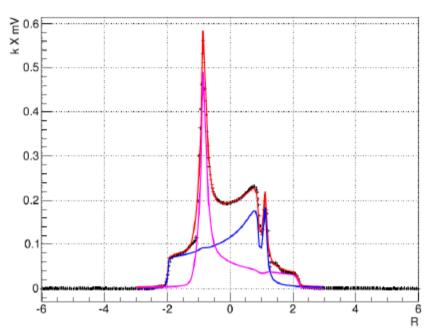

Selective Semi-saturation : Use power appropriate for position optimizing tensor polarization for all *R* 



For peak Semi-saturation significant enhancement occurs by reduction of negative tensor polarization at R as well as adding to positive tensor polarization at -R




Simulated Examples of regular lineshape (13,42,78%)

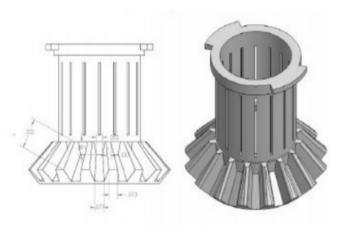



Examples Optimized Tensor Polarization Examples  $(1.3 \rightarrow 5.4, 13.6 \rightarrow 23.8, 52 \rightarrow 58\%)$ 

## Selective Semi-saturation (or just hole burning)



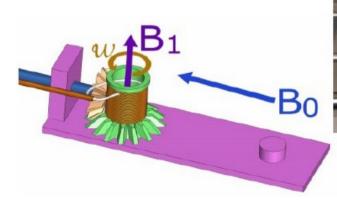
MC overlap with d-but. NMR experimental points (Pn= $51 \rightarrow 45$ ,Qn: $20 \rightarrow 31\%$ )




MC with fit and d-but. NMR experimental points (Pn= $48 \rightarrow 46$ ,Qn: $18 \rightarrow 6\%$ )

$$R = \frac{\omega - \omega_d}{3\omega_q}$$

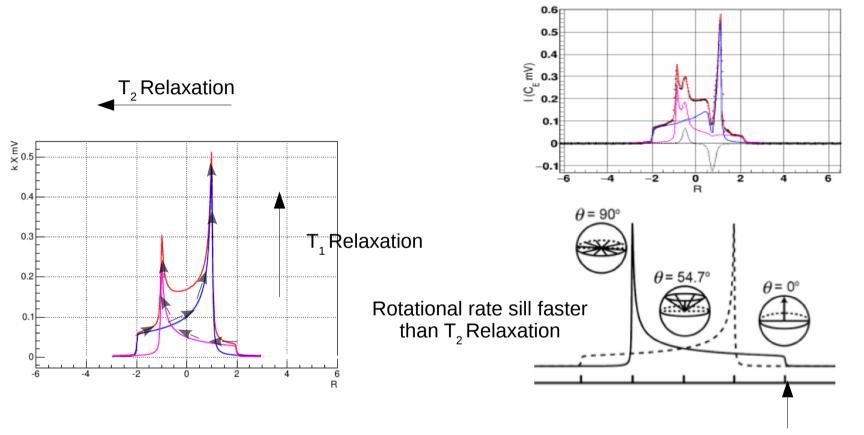
DK Eur.Phys.J. A53 (2017) no.7, 155 arXiv:1707.07065


### What Things Look Like








- Kel-F (C<sub>2</sub>ClF<sub>3</sub>)<sub>n</sub> cup and driving gear
- · Motor outside cryostat
- · NMR coil around cup
- · Already used with several designs at UVA
- · 1 Hz achieved with no problem
- Fixed beam spot

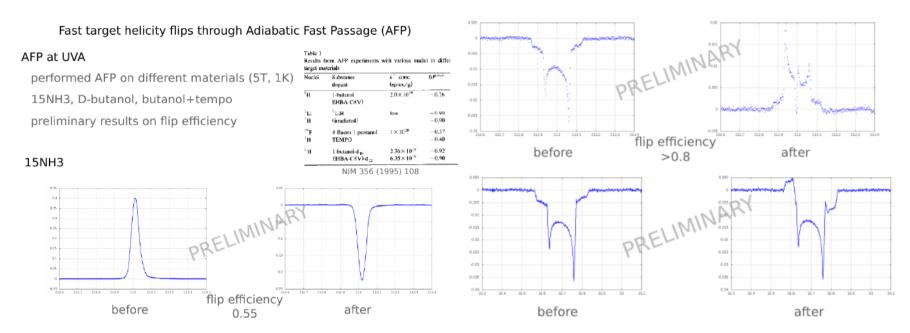






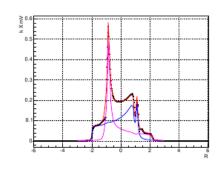
### Rotating Target Concept

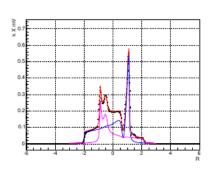


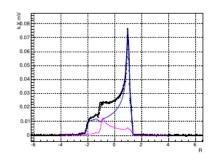

Selective saturation/pumping while rotating

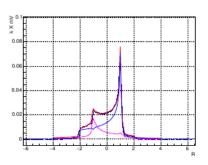
SSS with slow rotation

- Saturated domain moves with rotation
- Can enhance Q or go -Q


$$Q_n = (I_+ - I_-)/C_E$$
  
=  $(a_+ - a_0) - (a_0 - a_-)$ 


#### RF-Manipulated Signals





AFP produces rotation of the macroscopic magnetization vector by sweeping through resonance in a short time compared to the relaxation time

- Set record for Tensor Polarization for Deuteron (d-b only) Q>31% @1K 5T
- Set record for AFP flip with Proton e>50% @ 1K 5T

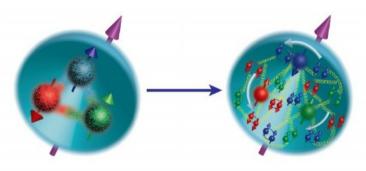


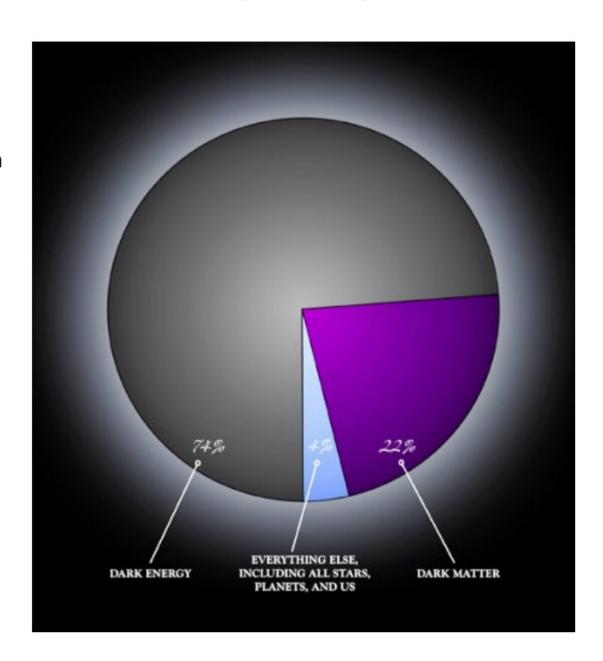






#### Achieved So Far


- Before recent research (1984): ~20%
- Recent studies SSS: (2014-2015): ~30%
- AFP with SSS (2016): ~34%
- Rotation with SSS: ~39%


DK Eur. Phys. J. A (2017) 53: 155 DK PoS, PSTP2015:014 (2016) DK J.Phys.Conf.Ser., **543**(1):012015 (2014) DK Int.J.Mod.Phys.Conf.Ser., **40**(1):1660105 (2016)

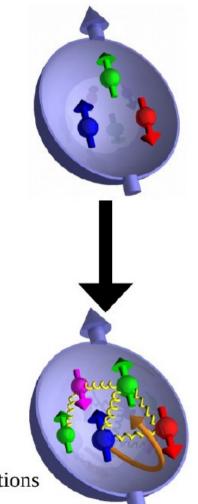
### SpinQuest Experiment

#### What We Think We Know

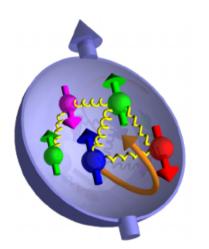
- Of the 4-5%, Higgs helps to understand 1% of this
- The mass generated by the Higgs mechanism is very far in value from the characteristic scale of strongly interacting matter
- Where is the rest of the Mass in hadrons
- Where is the rest of the Spin
- Valence quarks masses contribute only about 1% of the proton mass
- Valence quarks contribute 20-30% to the proton spin






#### Proton Spin Puzzle

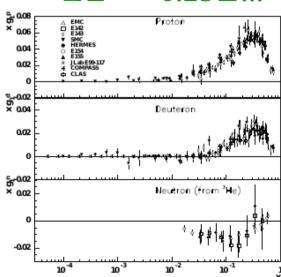
- Naive understanding of Proton spin not correct
- Add Gluon spin, Orbital Angular Momentum


$$S_{proton} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_q \rangle + \langle L_g \rangle$$
Quark Spin (Including sea quarks)

Gluon Spin Orbital Angular Momentum Contributions

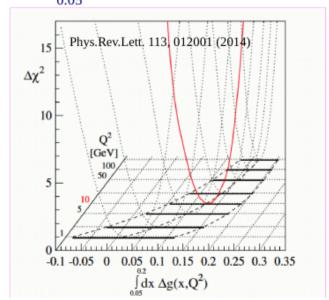
How do we access the different parts of the spin puzzle?

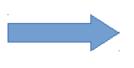



#### Nucleon Spin Puzzle



$$S_{proton} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_q \rangle + \langle L_g \rangle$$


#### Quark contribution


$$\Delta \Sigma \approx 0.25 \pm ...$$

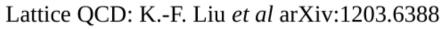


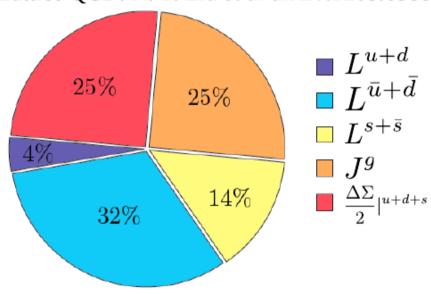
#### Gluon contribution

$$\int_{0.05}^{0.2} dx \Delta g(x) = 0.2 \pm 0.06$$



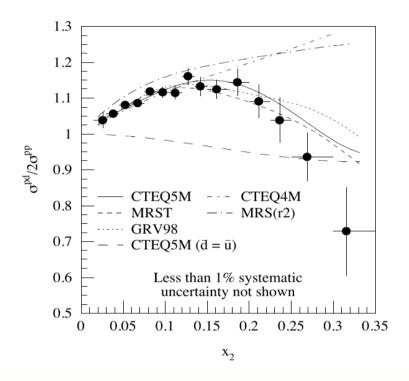



~50% Missing?


#### Where is the Missing Spin

$$S_{proton} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + J_g + \langle L_q \rangle + \langle L_{\bar{q}} \rangle$$

 Lattice QCD calculations indicate as much as 50% come from quark orbital angular momentum (OAM)


- **■**  $\Delta L_{valence} \approx Small$
- Sea Quark OAM remains largely unexplored
- Hints of sea quark OAM have been seen





HERMES, COMPASS, Jlab: SIDIS

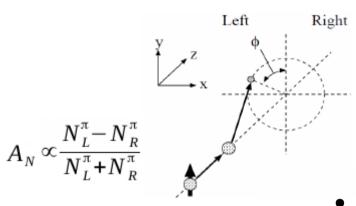
### Hints of Non-zero Sea Quarks OAM

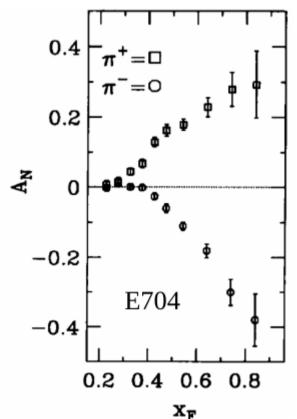


- $|\mathbf{p}\rangle = |\mathbf{p}\rangle + |\mathbf{N}^0\pi^+\rangle + |\Delta^{++}\pi^-\rangle + \dots$
- Pions:  $J^p=0^-$  Negative Parity Need **L=1**,3,... to recover proton's  $J^p=\frac{1}{2}^+$

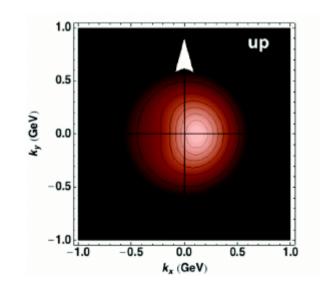
- Flavor asymmetry in sea quarks
- The pion cloud model
  - Simple parity conservation
  - Pions have nonzero O.A.M.

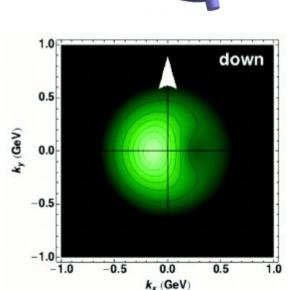
E866 Drell-Yan cross section ratio for deuterium verse hydrogen. The dashed line shows the ratio for a symmetric sea


#### Eight Leading order TMDs


| Parton<br>Nucleon | U                                                | L                                                 | T                                                              | <u>Legend</u> Nucleon  |
|-------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|------------------------|
| U                 | Number Density $f_1(x)$                          |                                                   | $\frac{\text{Boer-Mulders}}{h_1^{\perp}(x, k_T)}$              | Nucleon Spin Parton    |
| L                 |                                                  | $\frac{\text{Helicity}}{g_{_{1L}}(x)}$            | Worm-Gear $h_{1L}^{\perp}(x, k_T)$ $\bullet - \bullet \bullet$ | Parton Spin Parton TMD |
| Т                 | $\frac{\mathbf{Sivers}}{f_{1T}^{\perp}(x, k_T)}$ | $\frac{\text{Worm-Gear}}{g_{1T}^{\perp}(x, k_T)}$ | $\frac{\text{Transversity}}{h_{1T}(x)}$                        |                        |

<u>Pretzelosity</u>

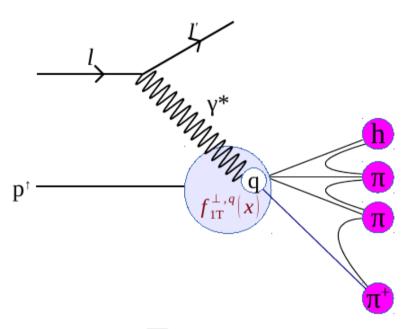

Sea quarks should carry orbital angular momentum. Can be explored via the Sivers PDF.


#### Transverse Momentum and The Sivers TMD





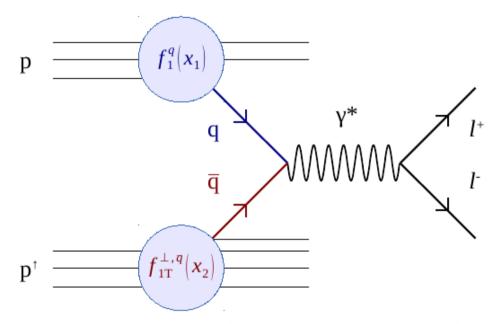
- The Sivers Function:
  - One of 8 TMD PDFs:  $f_{1T}^{\perp}(x, k_T)$
  - Correlation between proton's transverse spin and transverse parton momentum
- Quark Sivers Function
  - Polarized SIDID
  - Polarized Drell-Yan






A. Bacchetta and M. Contalbrigo II Nuovo Saggiatore, vol. 28, pp. 16-27, 2012

#### Accessing Quark Sivers TMDs

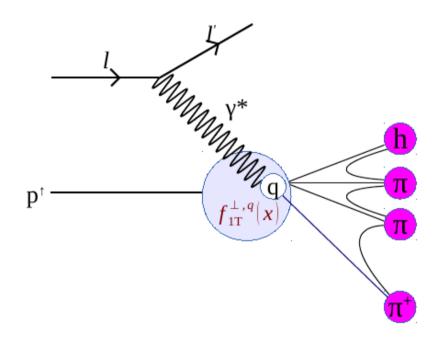

#### **Polarized Semi-Inclusive DIS**



$$A_{UT}^{SIDIS} \propto \frac{\sum_{q} e_{q}^{2} f_{1T}^{\perp,q}(\mathbf{x}) \otimes D_{1}^{q}(\mathbf{z})}{\sum_{q} e_{q}^{2} f_{1}^{q}(\mathbf{x}) \otimes D_{1}^{q}(\mathbf{z})}$$

- L-R asymmetry in hadron production
- Quark to Hadron Fragmention function
- Valence-Sea quark: Mixed

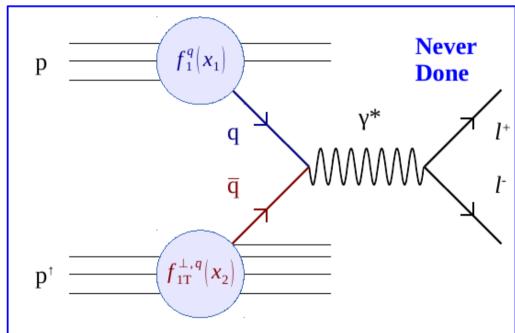
#### **Polarized Drell-Yan**




$$A_N^{DY} \propto \frac{\sum_q e_q^2 \left[ f_1^q \left( x_1 \right) \cdot f_{1T}^{\perp,\bar{q}} \left( x_2 \right) + 1 \leftrightarrow 2 \right]}{\sum_q e_q^2 \left[ f_1^q \left( x_1 \right) \cdot f_1^{\bar{q}} \left( x_2 \right) + 1 \leftrightarrow 2 \right]}$$

- L-R asymmetry in Drell-yan production
- No Quark Fragmention function
- Valence-Sea quark Isolated

#### Accessing Quark Sivers TMDs


#### **Polarized Semi-Inclusive DIS**

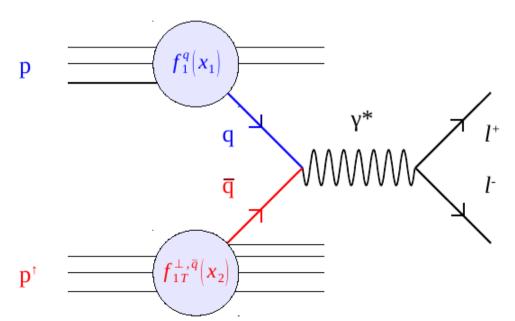


#### Cornerstone Prediction of QCD

- The same Sivers distribution in both processes
- But with opposite sign
  - T-Odd
  - Initial state, Final state switch

#### **Polarized Drell-Yan**

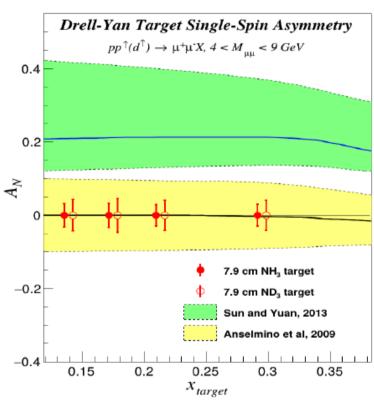



$$f_{1T}^{\perp q}\mid_{SIDIS} = -f_{1T}^{\perp q}\mid_{DY}$$

| Quark   | SIDIS                              | DY                   |
|---------|------------------------------------|----------------------|
| Valence | Known $f_1^u(x) \approx -f_1^d(x)$ | Unknown<br>(COMPASS) |
| Sea     | Poor<br>Sensitivity                | Unknown<br>(E1039)   |

#### Accessing Sea Quarks Sivers TMDs

 Quark Sivers TMD directly accessible using Polarized SIDIS, Polarized Drell-Yan



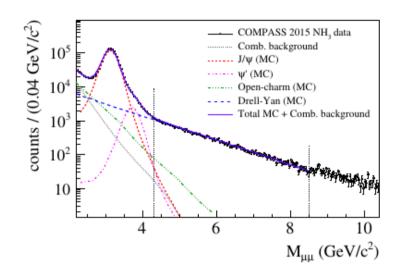


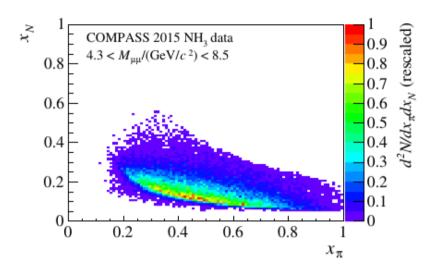

$$A_N^{DY} \propto \frac{\sum_q e_q^2 \left[ f_1^q(x_1) \cdot f_{1T}^{\perp,\bar{q}}(x_2) + 1 \leftrightarrow 2 \right]}{\sum_q e_q^2 \left[ f_1^q(x_1) \cdot f_1^{\bar{q}}(x_2) + 1 \leftrightarrow 2 \right]}$$

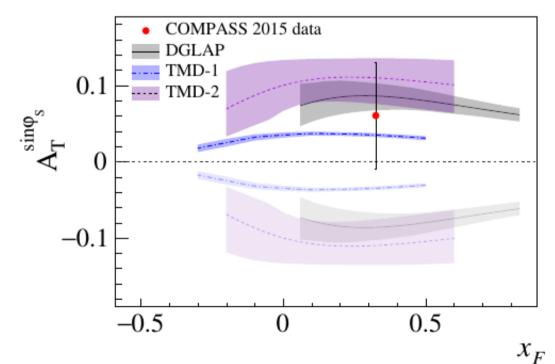
- L-R single spin asymmetry in Drell-Yan production
- No Quark Fragmention function
- Valence-Sea quark Isolated.

#### The Measurement




$$\begin{array}{c|c}
 & L^{u+d} \\
 & L^{\overline{u}+\overline{d}} \\
 & L^{s+\overline{s}} \\
 & J^{g} \\
 & \Delta \Sigma |_{u+d+s}
\end{array}$$


$$A_{N}(p_{beam} + p_{target}^{\uparrow} \rightarrow DY) \propto \frac{N_{L}^{DY} - N_{R}^{DY}}{N_{L}^{DY} + N_{R}^{DY}} \propto \frac{f_{1T}^{\perp,\bar{u}}(x_{t})}{f_{1}^{\bar{u}}(x_{t})}$$


$$A_{N}(p_{beam}+d_{target}^{\uparrow} \rightarrow DY) \propto \frac{N_{L}^{DY}-N_{R}^{DY}}{N_{L}^{DY}+N_{R}^{DY}} \propto \frac{f_{1T}^{\perp,d}(x_{t})}{f_{1}^{\bar{d}}(x_{t})}$$

- First measurement of sea quark Sivers  $(\bar{u}, \bar{d})$
- Sign and value
  - Result has strong implications for O.A.M. in spin puzzle
- If nonzero, "smoking gun" for Sea quark O.A.M.
- If zero, where is proton spin coming from?

### **Compass Results**







Fits to COMPASS, HERMES, Jlab SIDIS model predictions for different Q<sup>2</sup> evolution predictions

#### Other Physics

- Sea Quark Sivers
- Transversity
- Gluon Sivers
- J/psi TSSA
- Heavy Photon and Dark Higgs

#### Proton Beam at FNAL



- 120 GeV proton beam
- √s = 15.5 GeV
- Projected Beam for E1039
  - Beam: 5x10<sup>12</sup> p/spill; spill is 5 s/min
  - Protons on target per year
    - 9.7x10<sup>17</sup>

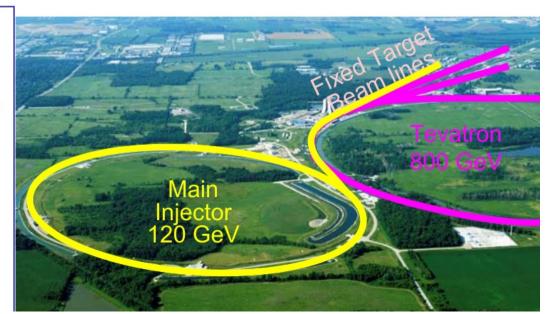
#### Advantage of the Main Injector

The (very successful) past:

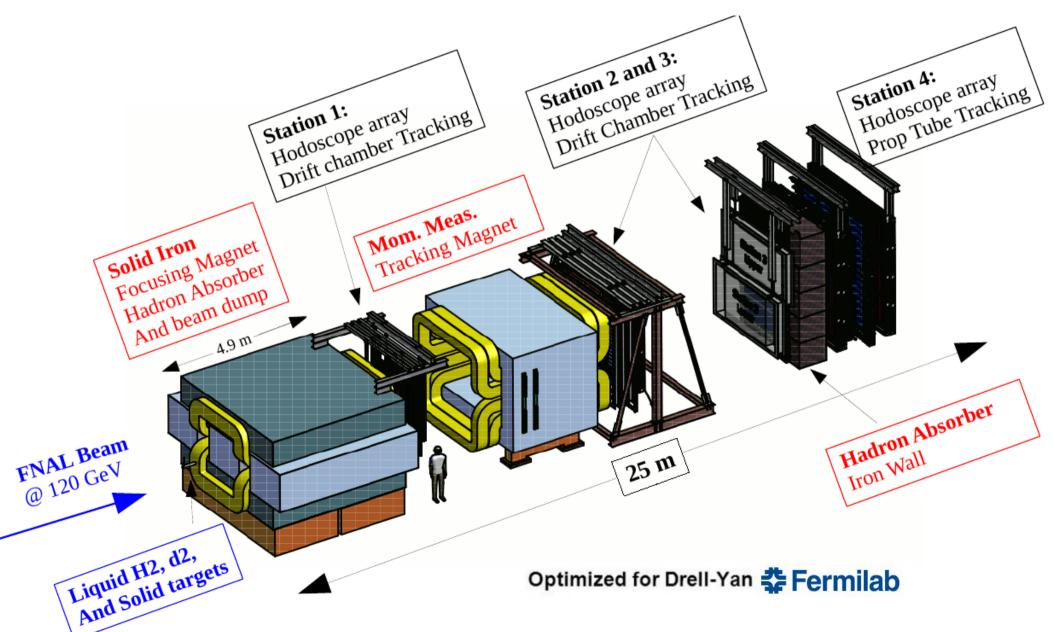
#### Fermilab E866/NuSea

- Data in 1996-1997
- ¹H, ²H, and nuclear targets
- 800 GeV proton beam

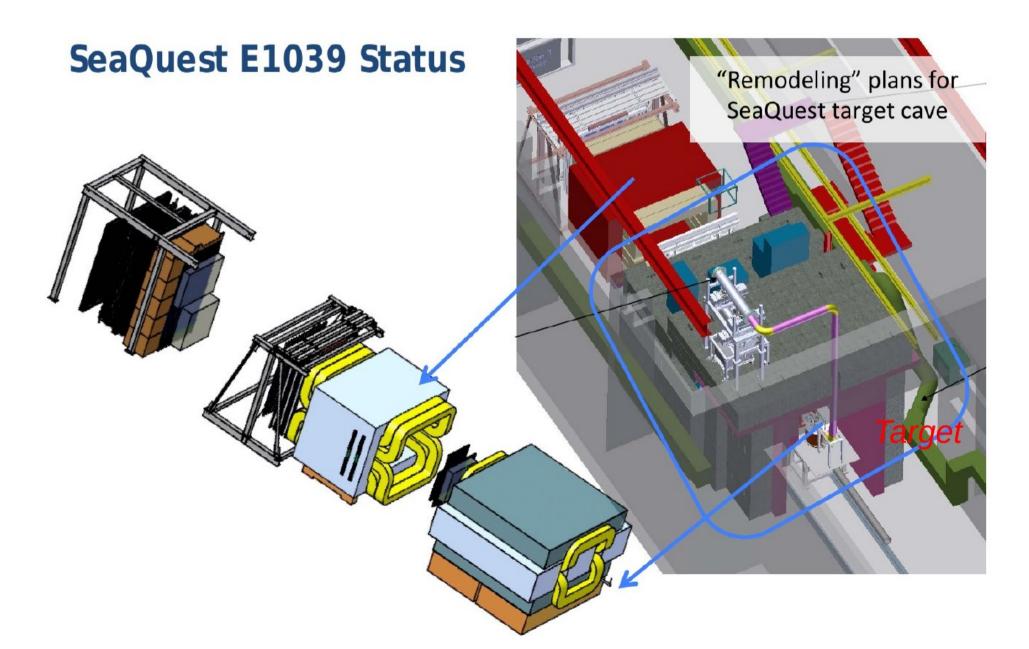
#### Fermilab E906


- Data in 2010
- <sup>1</sup>H, <sup>2</sup>H, and nuclear targets
- 120 GeV proton Beam

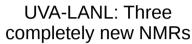
$$\frac{d^2o}{dx_1dx_2} = \frac{4\pi\alpha^2}{9x_1x_2} \frac{1}{s} \times \sum_{i} e_i^2 \left[ q_{ti}(x_t)\bar{q}_{bi}(x_b) + \bar{q}_{ti}(x_t)q_{bi}(x_b) \right]$$

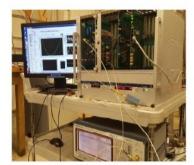

- Cross section scales as 1/s
  - 7× that of 800 GeV beam
- Backgrounds, primarily from J/ψ decays scale as s
  - 7× Luminosity for same detector

rate as 800 GeV beam


50× statistics!!




### Muon ID at SpinQuest




### **Experimental Setup**



#### Firsts for Polarized Targets





**UVA**: Design




LN<sub>2</sub>





UVA: Tune System and Automation





Microwave



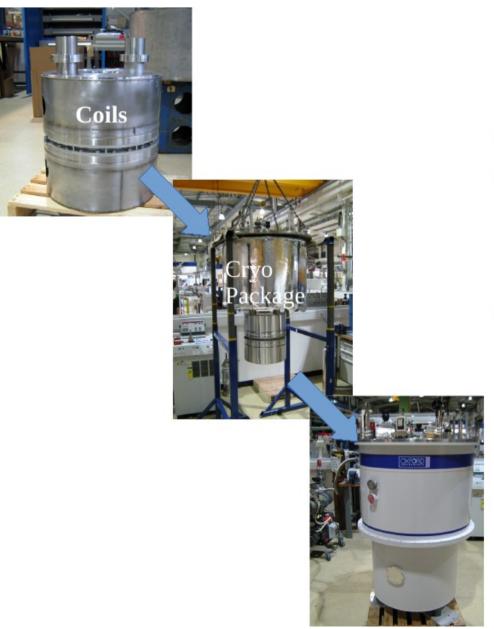


cerlikon O Pumps

14,000 providing the highest cooling power for 1K system

UVA: Configure Fridge Fridge and Insert, Commission for Optimal running, setup with Actuator




UVA: Target Insert with longest cell at 8 cm for 5T

Magnet



UVA: Commisioning, Slow Controls, Quench Study, Beamline interface,...

#### Polarized Target for E1039



- Refurbished 5T Superconducting Magnet
- Uses Dynamic Nuclear Polarization (DNP)
  - Needs low Temp, High Magnetic Field
  - Needs Paramagnetic material
    - Irradiated Ammonia NH<sub>3</sub>
- Proven Technology

Fermilab Target

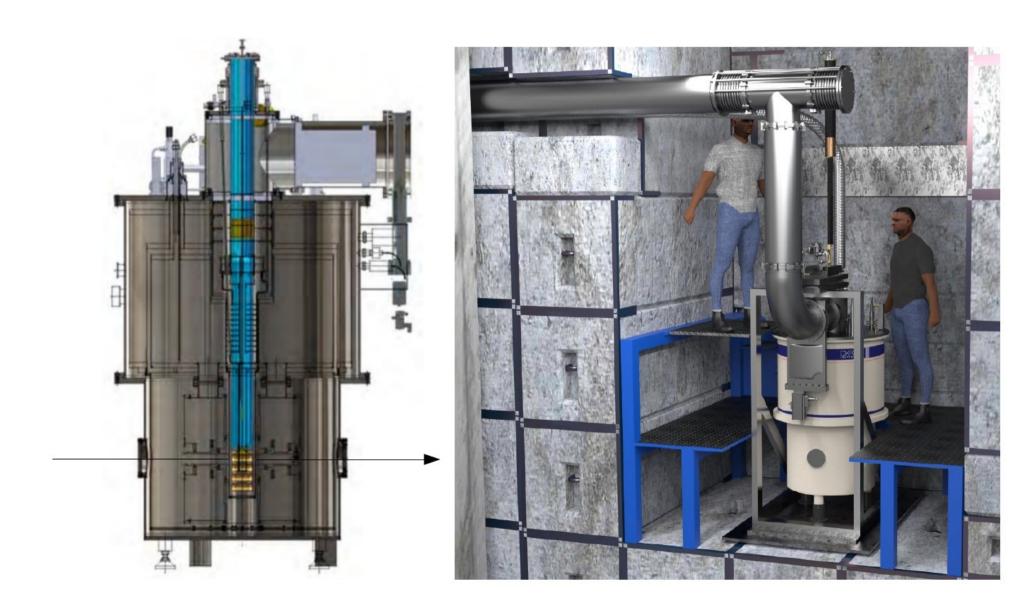


JLab Target

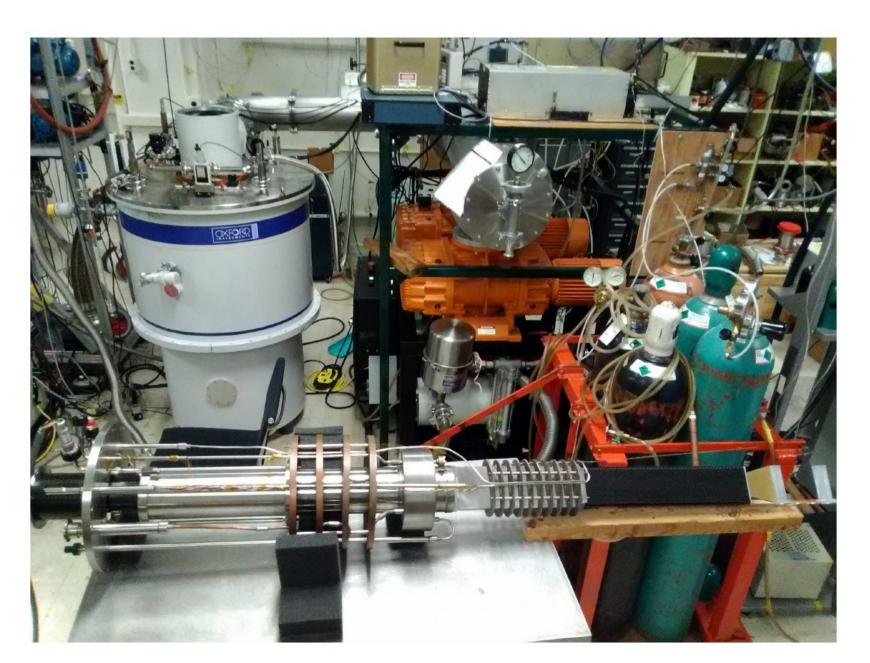


#### Polarized Target on Intensity Frontier

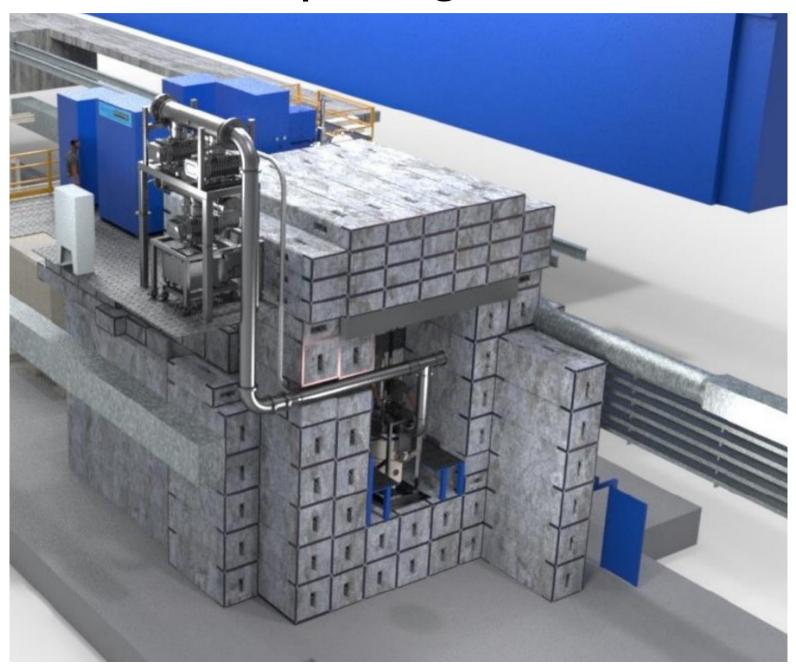
Highest Intensity proton beam on polarized target with 4x10<sup>12</sup> per 4s spill


- 8 cm long target cell of solid:
   NH<sub>3</sub> and ND<sub>3</sub>
- 2 watts of cooling power:
   14,000 m³/hour pumping
- 5T vertically pointing SC magnet:
   Pushing critical temp each spill
- Luminosity of around 2X10<sup>35</sup> cm<sup>-2</sup> s<sup>-1</sup>

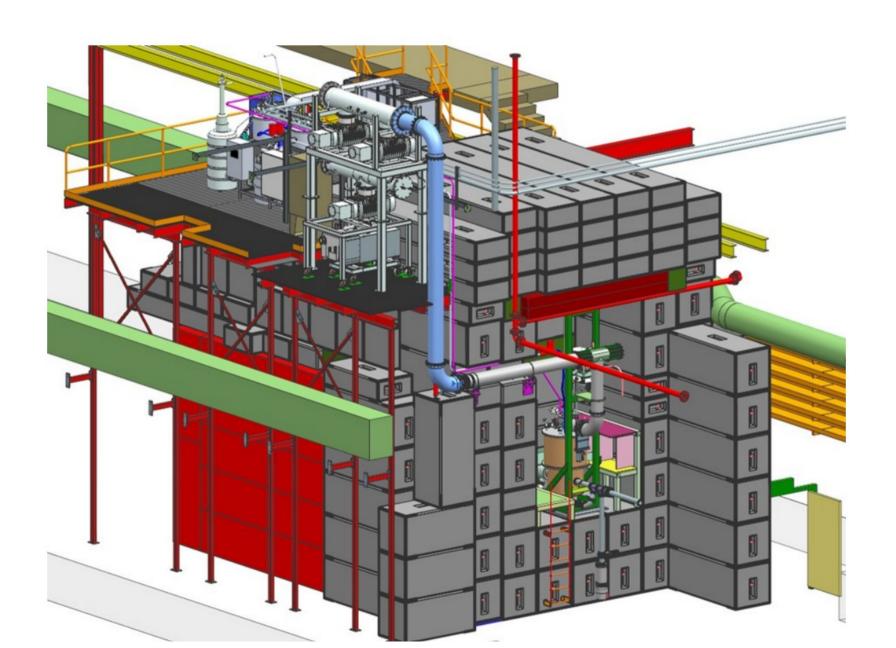



#### Some Challenges

- SC Magnet quench threshold (limits beam intensity)
- Target microwave uniformity (distribution and power)
- Uniformity of dose in the z-direction
- Liquefier and preservation of LHe
- Polarization measurements of long target cell
- New physics process: dilution factor (systematics)
- Radiation level of target and supporting systems
- Larger than 10<sup>3</sup> mSv/hr in cave and 10<sup>4</sup> mSv/hr in magnet


#### Polarized Target on Intensity Frontier



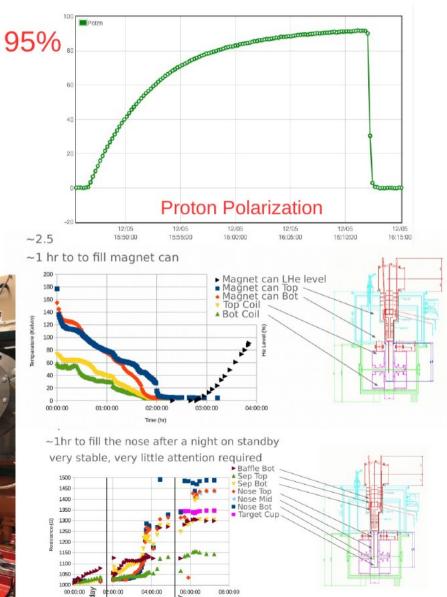

### Target System



### Mock-up Target Cave



### Mock-up Target Cave




#### **Target Performance**



Insert in LN2





#### **FNAL Summary**

- First measurement of Sivers asymmetry for light sea quarks
  - Flavor dependence of ubar, dbar
- Sign and Magnitude of Sivers Distribution
  - If  $A_N \neq 0$ , major discovery: "Smoking Gun" evidence for  $L_{sea} \neq 0$
  - If  $A_N$ =0:  $L_{sea}$ =0, spin puzzle more dramatic?
- Beginning of a spin program at FNAL

#### Big Commitment

- Spokesperson
- SpinQuest Collaboration Chair
- Target Team Leader

#### Join The Effort

http://twist.phys.virginia.edu/E1039/

# SPINQuest

Send mail to: dustin@jlab.org

A Good time to join the collaboration, experiment receives Nuclear and HEP funding, so everyone in Spin physics is welcome and there is still lots of work to go

**⊧ Fermilab** 

#### Thank You