next up previous
Next: Another unpolarized nucleus Up: Calculation of Asymmetries Previous: Constant polarizations, only deuterium

Variable polarizations

Polarizations (h, P) not constant but changing over time. No other nuclei than deuterium involved. Using eq. 5 for summation and normalization leads makes the normalized counts proportional to the deuteron cross section \( \sigma _{D} \) only:


\begin{displaymath}N^{hP}\propto \sigma _{D}(h,P,T)\end{displaymath}

Beam-target asymmetry (eq. 2):

\begin{displaymath}A_{BT}=\frac{\left\langle hP\right\rangle A_{ed}^{V}+\left\la...
...\right\rangle A_{d}^{V}+\left\langle T\right\rangle A_{ed}^{T}}\end{displaymath}

1..k (k+1..m) runs with positive (negative) target polarization and assuming that positive and negative beam helicity are the same. For the averaged polarizations we get:
     
$\displaystyle \left\langle hP\right\rangle$ = $\displaystyle \frac{1}{2}\left( \frac{1}{k}\sum ^{k}_{i=1}h_{i}P_{i}-\frac{1}{m-k}\sum _{i=k+1}^{m}h_{i}P_{i}\right)$ (6)
$\displaystyle \left\langle hT\right\rangle$ = $\displaystyle \frac{1}{2}\left( \frac{1}{k}\sum ^{k}_{i=1}h_{i}T_{i}-\frac{1}{m-k}\sum _{i=k+1}^{m}h_{i}T_{i}\right)$ (7)
$\displaystyle \left\langle P\right\rangle$ = $\displaystyle \frac{1}{2}\left( \frac{1}{k}\sum ^{k}_{i=1}P_{i}+\frac{1}{m-k}\sum _{i=k+1}^{m}P_{i}\right)$ (8)
$\displaystyle \left\langle T\right\rangle$ = $\displaystyle \frac{1}{2}\left( \frac{1}{k}\sum ^{k}_{i=1}T_{i}+\frac{1}{m-k}\sum _{i=k+1}^{m}T_{i}\right)$ (9)
$\displaystyle \left\langle h\right\rangle$ = $\displaystyle \frac{1}{2}\left( \frac{1}{k}\sum ^{k}_{i=1}h_{i}-\frac{1}{m-k}\sum _{i=k+1}^{m}h_{i}\right)$ (10)



Marko Zeier
2001-02-17